Exemple #1
0
def main(args):
    print('==> Using settings {}'.format(args))

    # print('==> Loading dataset...')
    # dataset_path = path.join('data', 'data_3d_' + args.dataset + '.npz')
    # if args.dataset == 'h36m':
    #     from common.h36m_dataset import Human36mDataset, TRAIN_SUBJECTS, TEST_SUBJECTS
    #     dataset = Human36mDataset(dataset_path)
    #     subjects_train = TRAIN_SUBJECTS
    #     subjects_test = TEST_SUBJECTS
    # else:
    #     raise KeyError('Invalid dataset')

    # print('==> Preparing data...')
    # dataset = read_3d_data(dataset)
    #
    # print('==> Loading 2D detections...')
    # keypoints = create_2d_data(path.join('data', 'data_2d_' + args.dataset + '_' + args.keypoints + '.npz'), dataset)
    #
    # action_filter = None if args.actions == '*' else args.actions.split(',')
    # if action_filter is not None:
    #     action_filter = map(lambda x: dataset.define_actions(x)[0], action_filter)
    #     print('==> Selected actions: {}'.format(action_filter))
    #
    stride = args.downsample
    cudnn.benchmark = True
    device = torch.device("cuda")

    # Create model
    print("==> Creating model...")

    p_dropout = (None if args.dropout == 0.0 else args.dropout)
    # adj = adj_mx_from_skeleton(dataset.skeleton())
    adj = adj_mx_from_skeleton()
    print(adj)
    # model_pos = SemGCN(adj, args.hid_dim, num_layers=args.num_layers, p_dropout=p_dropout,
    #                    nodes_group=dataset.skeleton().joints_group() if args.non_local else None).to(device)
    model_pos = SemGCN(adj,
                       args.hid_dim,
                       num_layers=args.num_layers,
                       p_dropout=p_dropout,
                       nodes_group=None).to(device)

    print("==> Total parameters: {:.2f}M".format(
        sum(p.numel() for p in model_pos.parameters()) / 1000000.0))

    criterion = nn.MSELoss(reduction='mean').to(device)
    optimizer = torch.optim.Adam(model_pos.parameters(), lr=args.lr)

    # Optionally resume from a checkpoint
    if args.resume or args.evaluate:
        ckpt_path = (args.resume if args.resume else args.evaluate)

        if path.isfile(ckpt_path):
            print("==> Loading checkpoint '{}'".format(ckpt_path))
            ckpt = torch.load(ckpt_path)
            start_epoch = ckpt['epoch']
            error_best = ckpt['error']
            glob_step = ckpt['step']
            lr_now = ckpt['lr']
            model_pos.load_state_dict(ckpt['state_dict'])
            optimizer.load_state_dict(ckpt['optimizer'])
            print("==> Loaded checkpoint (Epoch: {} | Error: {})".format(
                start_epoch, error_best))

            if args.resume:
                ckpt_dir_path = path.dirname(ckpt_path)
                logger = Logger(path.join(ckpt_dir_path, 'log.txt'),
                                resume=True)
        else:
            raise RuntimeError(
                "==> No checkpoint found at '{}'".format(ckpt_path))
    else:
        start_epoch = 0
        error_best = None
        glob_step = 0
        lr_now = args.lr
        ckpt_dir_path = args.checkpoint + '/' + 'test1'

        if not path.exists(ckpt_dir_path):
            os.makedirs(ckpt_dir_path)
            print('==> Making checkpoint dir: {}'.format(ckpt_dir_path))

        logger = Logger(os.path.join(ckpt_dir_path, 'log.txt'))
        logger.set_names(
            ['epoch', 'lr', 'loss_train', 'error_eval_p1', 'error_eval_p2'])

    if args.evaluate:
        print('==> Evaluating...')

        # if action_filter is None:
        #     action_filter = dataset.define_actions()
        #
        # errors_p1 = np.zeros(len(action_filter))
        # errors_p2 = np.zeros(len(action_filter))

        # for i, action in enumerate(action_filter):
        # poses_valid, poses_valid_2d, actions_valid = fetch(subjects_test, dataset, keypoints, [action], stride)
        # valid_loader = DataLoader(PoseGenerator(poses_valid, poses_valid_2d, actions_valid),
        #                           batch_size=args.batch_size, shuffle=False,
        #                           num_workers=args.num_workers, pin_memory=True)
        # poses_valid, poses_valid_2d, actions_valid = fetch(subjects_test, dataset, keypoints, [action], stride)
        valid_loader = DataLoader(PoseGenerator(opt='val'),
                                  batch_size=args.batch_size,
                                  shuffle=False,
                                  num_workers=args.num_workers,
                                  pin_memory=True)
        errors_p1, errors_p2 = evaluate(valid_loader, model_pos, device)

        print('Protocol #1   (MPJPE) action-wise average: {:.2f} (mm)'.format(
            np.mean(errors_p1)))
        print('Protocol #2 (P-MPJPE) action-wise average: {:.2f} (mm)'.format(
            np.mean(errors_p2)))

        # print('Protocol #1   (MPJPE) action-wise average: {:.2f} (mm)'.format(np.mean(errors_p1).item()))
        # print('Protocol #2 (P-MPJPE) action-wise average: {:.2f} (mm)'.format(np.mean(errors_p2).item()))
        exit(0)

    # poses_train, poses_train_2d, actions_train = fetch(subjects_train, dataset, keypoints, action_filter, stride)
    # print('2d data shape: ', len(poses_train_2d))
    # print('3d data shape: ', len(poses_train))
    # print('action data shape: ', len(actions_train))

    # train_loader = DataLoader(PoseGenerator(poses_train, poses_train_2d, actions_train), batch_size=args.batch_size,
    #                           shuffle=True, num_workers=args.num_workers, pin_memory=True)

    train_loader = DataLoader(PoseGenerator(opt='train'),
                              batch_size=args.batch_size,
                              shuffle=True,
                              num_workers=args.num_workers,
                              pin_memory=True)

    # poses_valid, poses_valid_2d, actions_valid = fetch(subjects_test, dataset, keypoints, action_filter, stride)
    # valid_loader = DataLoader(PoseGenerator(poses_valid, poses_valid_2d, actions_valid), batch_size=args.batch_size,
    #                           shuffle=False, num_workers=args.num_workers, pin_memory=True)
    valid_loader = DataLoader(PoseGenerator(opt='val'),
                              batch_size=args.batch_size,
                              shuffle=False,
                              num_workers=args.num_workers,
                              pin_memory=True)

    for epoch in range(start_epoch, args.epochs):
        print('\nEpoch: %d | LR: %.8f' % (epoch + 1, lr_now))

        # Train for one epoch
        epoch_loss, lr_now, glob_step = train(train_loader,
                                              model_pos,
                                              criterion,
                                              optimizer,
                                              device,
                                              args.lr,
                                              lr_now,
                                              glob_step,
                                              args.lr_decay,
                                              args.lr_gamma,
                                              max_norm=args.max_norm)

        # Evaluate
        error_eval_p1, error_eval_p2 = evaluate(valid_loader, model_pos,
                                                device)

        # Update log file
        logger.append(
            [epoch + 1, lr_now, epoch_loss, error_eval_p1, error_eval_p2])

        # Save checkpoint
        if error_best is None or error_best > error_eval_p1:
            error_best = error_eval_p1
            save_ckpt(
                {
                    'epoch': epoch + 1,
                    'lr': lr_now,
                    'step': glob_step,
                    'state_dict': model_pos.state_dict(),
                    'optimizer': optimizer.state_dict(),
                    'error': error_eval_p1
                },
                ckpt_dir_path,
                suffix='best')

        if (epoch + 1) % args.snapshot == 0:
            save_ckpt(
                {
                    'epoch': epoch + 1,
                    'lr': lr_now,
                    'step': glob_step,
                    'state_dict': model_pos.state_dict(),
                    'optimizer': optimizer.state_dict(),
                    'error': error_eval_p1
                }, ckpt_dir_path)

    logger.close()
    logger.plot(['loss_train', 'error_eval_p1'])
    savefig(path.join(ckpt_dir_path, 'log.eps'))

    return
Exemple #2
0
def main(args):
    print('==> Using settings {}'.format(args))

    convm = torch.zeros(3, 17, 17, dtype=torch.float)

    print('==> Loading dataset...')
    dataset_path = path.join('data', 'data_3d_' + args.dataset + '.npz')
    if args.dataset == 'h36m':
        from common.h36m_dataset import Human36mDataset
        dataset = Human36mDataset(dataset_path)
    else:
        raise KeyError('Invalid dataset')

    print('==> Preparing data...')
    dataset = read_3d_data(dataset)

    print('==> Loading 2D detections...')
    keypoints = create_2d_data(
        path.join('data',
                  'data_2d_' + args.dataset + '_' + args.keypoints + '.npz'),
        dataset)

    cudnn.benchmark = True
    device = torch.device("cuda")

    # Create model
    print("==> Creating model...")

    if args.architecture == 'linear':
        from models.linear_model import LinearModel, init_weights
        num_joints = dataset.skeleton().num_joints()
        model_pos = LinearModel(num_joints * 2,
                                (num_joints - 1) * 3).to(device)
        model_pos.apply(init_weights)
    elif args.architecture == 'gcn':
        from models.sem_gcn import SemGCN
        from common.graph_utils import adj_mx_from_skeleton
        p_dropout = (None if args.dropout == 0.0 else args.dropout)
        adj = adj_mx_from_skeleton(dataset.skeleton())
        model_pos = SemGCN(convm,
                           adj,
                           args.hid_dim,
                           num_layers=args.num_layers,
                           p_dropout=p_dropout,
                           nodes_group=dataset.skeleton().joints_group()
                           if args.non_local else None).to(device)
    else:
        raise KeyError('Invalid model architecture')

    print("==> Total parameters: {:.2f}M".format(
        sum(p.numel() for p in model_pos.parameters()) / 1000000.0))

    # Resume from a checkpoint
    ckpt_path = args.evaluate

    if path.isfile(ckpt_path):
        print("==> Loading checkpoint '{}'".format(ckpt_path))
        ckpt = torch.load(ckpt_path)
        start_epoch = ckpt['epoch']
        error_best = ckpt['error']
        model_pos.load_state_dict(ckpt['state_dict'])
        print("==> Loaded checkpoint (Epoch: {} | Error: {})".format(
            start_epoch, error_best))
    else:
        raise RuntimeError("==> No checkpoint found at '{}'".format(ckpt_path))

    print('==> Rendering...')

    poses_2d = keypoints[args.viz_subject][args.viz_action]
    out_poses_2d = poses_2d[args.viz_camera]
    out_actions = [args.viz_camera] * out_poses_2d.shape[0]

    poses_3d = dataset[args.viz_subject][args.viz_action]['positions_3d']
    assert len(poses_3d) == len(poses_2d), 'Camera count mismatch'
    out_poses_3d = poses_3d[args.viz_camera]

    ground_truth = dataset[args.viz_subject][args.viz_action]['positions_3d'][
        args.viz_camera].copy()

    input_keypoints = out_poses_2d.copy()
    render_loader = DataLoader(PoseGenerator([out_poses_3d], [out_poses_2d],
                                             [out_actions]),
                               batch_size=args.batch_size,
                               shuffle=False,
                               num_workers=args.num_workers,
                               pin_memory=True)

    prediction = evaluate(render_loader, model_pos, device,
                          args.architecture)[0]

    # Invert camera transformation
    cam = dataset.cameras()[args.viz_subject][args.viz_camera]
    prediction = camera_to_world(prediction, R=cam['orientation'], t=0)
    prediction[:, :, 2] -= np.min(prediction[:, :, 2])
    ground_truth = camera_to_world(ground_truth, R=cam['orientation'], t=0)
    ground_truth[:, :, 2] -= np.min(ground_truth[:, :, 2])

    anim_output = {'Regression': prediction, 'Ground truth': ground_truth}
    input_keypoints = image_coordinates(input_keypoints[..., :2],
                                        w=cam['res_w'],
                                        h=cam['res_h'])
    render_animation(input_keypoints,
                     anim_output,
                     dataset.skeleton(),
                     dataset.fps(),
                     args.viz_bitrate,
                     cam['azimuth'],
                     args.viz_output,
                     limit=args.viz_limit,
                     downsample=args.viz_downsample,
                     size=args.viz_size,
                     input_video_path=args.viz_video,
                     viewport=(cam['res_w'], cam['res_h']),
                     input_video_skip=args.viz_skip)
    def __init__(self, args, device, skeleton):
        print("Initialize SemGCMDriver - begin.")
        from models.sem_gcn import SemGCN
        from common.graph_utils import adj_mx_from_skeleton
        self.hid_dim = args.sem_hid_dim
        self.num_layers = args.sem_num_layers
        self.p_dropout = (None
                          if args.sem_dropout == 0.0 else args.sem_dropout)
        self.render_score_threshold = args.render_score_threshold
        self.skeleton = skeleton
        adj = adj_mx_from_skeleton(self.skeleton)
        self.device = device
        self.model_pos = SemGCN(adj,
                                self.hid_dim,
                                num_layers=self.num_layers,
                                p_dropout=self.p_dropout,
                                nodes_group=self.skeleton.joints_group()).to(
                                    self.device.device)
        self.last_2d_positions = None
        self.last_3d_positions = None
        self.last_scores = None
        self.render_3d = args.sem_show_3d
        self._plot = args.sem_plot
        self._plot_initalized = False
        self._plot_skeleton = None
        self.last_3d_skeletons = None

        # Resume from a checkpoint
        ckpt_path = args.sem_evaluate
        if path.isfile(ckpt_path):
            print("==> Loading checkpoint '{}'".format(ckpt_path))
            self.ckpt = torch.load(ckpt_path)
            self.rename_nonlocal_node(self.ckpt)
            start_epoch = self.ckpt['epoch']
            error_best = self.ckpt['error']
            self.model_pos.load_state_dict(self.ckpt['state_dict'])
            print("==> Loaded checkpoint (Epoch: {} | Error: {})".format(
                start_epoch, error_best))
        else:
            raise RuntimeError(
                "==> No checkpoint found at '{}'".format(ckpt_path))

        if self._plot:
            size = 5
            radius = 1
            azim = 45
            title = "test"
            plt.ion()
            fig = plt.figure(figsize=(size, size))
            self._plot_ax = fig.add_subplot(1, 1, 1, projection='3d')
            self._plot_ax.view_init(elev=15., azim=azim)
            self._plot_ax.set_xlim3d([-radius / 2, radius / 2])
            self._plot_ax.set_zlim3d([0, radius])
            self._plot_ax.set_ylim3d([-radius / 2, radius / 2])
            self._plot_ax.set_aspect('auto')
            self._plot_ax.set_xticklabels([])
            self._plot_ax.set_yticklabels([])
            self._plot_ax.set_zticklabels([])
            self._plot_ax.dist = 7.5
            self._plot_ax.set_title(title)  # , pad=35

        print("Initialize SemGCMDriver - end.")
Exemple #4
0
def main():
    dataset_path = "./data/data_3d_h36m.npz"    # 加载数据
    from common.h36m_dataset import Human36mDataset
    dataset = Human36mDataset(dataset_path)
    dataset = read_3d_data(dataset)
    cudnn.benchmark = True
    device = torch.device("cpu")
    from models.sem_gcn import SemGCN
    from common.graph_utils import adj_mx_from_skeleton
    p_dropout = None
    adj = adj_mx_from_skeleton(dataset.skeleton())
    model_pos = SemGCN(adj, 128, num_layers=4, p_dropout=p_dropout,
                       nodes_group=dataset.skeleton().joints_group()).to(device)
    ckpt_path = "./checkpoint/pretrained/ckpt_semgcn_nonlocal_sh.pth.tar"
    ckpt = torch.load(ckpt_path, map_location='cpu')
    model_pos.load_state_dict(ckpt['state_dict'], False)
    model_pos.eval()
    # ============ 新增代码 ==============
    # 从项目处理2d数据的代码中输出的一个人体数据
    inputs_2d = [[483.0, 450], [503, 450], [503, 539], [496, 622], [469, 450], [462, 546], [469, 622], [483, 347],
                 [483, 326], [489, 264], [448, 347], [448, 408], [441, 463], [517, 347], [524, 408], [538, 463]]

    # # openpose的测试样例识别结果
    # inputs_2d = [[86.0, 137], [99, 128], [94, 127], [97, 110], [89, 105], [102, 129], [116, 116], [99, 110],
    #              [105, 93], [117, 69], [147, 63], [104, 93], [89, 69], [82, 38], [89, 139], [94, 140]]

    inputs_2d = np.array(inputs_2d)
    # inputs_2d[:, 1] = np.max(inputs_2d[:, 1]) - inputs_2d[:, 1]   # 变成正的人体姿态,原始数据为倒立的

    cam = dataset.cameras()['S1'][0]    # 获取相机参数
    inputs_2d[..., :2] = normalize_screen_coordinates(inputs_2d[..., :2], w=cam['res_w'], h=cam['res_h'])  # 2d坐标处理

    # 画出归一化屏幕坐标并且标记序号的二维关键点图像
    print(inputs_2d)    # 打印归一化后2d关键点坐标
    d_x = inputs_2d[:, 0]
    d_y = inputs_2d[:, 1]
    plt.figure()
    plt.scatter(d_x, d_y)
    for i, txt in enumerate(np.arange(inputs_2d.shape[0])):
        plt.annotate(txt, (d_x[i], d_y[i]))     # 标号
    # plt.show()      # 显示2d关键点归一化后的图像

    # 获取3d结果
    inputs_2d = torch.tensor(inputs_2d, dtype=torch.float32)    # 转换为张量
    outputs_3d = model_pos(inputs_2d).cpu()         # 加载模型
    outputs_3d[:, :, :] -= outputs_3d[:, :1, :]     # Remove global offset / 移除全球偏移
    predictions = [outputs_3d.detach().numpy()]     # 预测结果
    prediction = np.concatenate(predictions)[0]     # 累加取第一个
    # Invert camera transformation  / 反相机的转换
    prediction = camera_to_world(prediction, R=cam['orientation'], t=0)     # R和t的参数设置影响不大,有多种写法和选取的相机参数有关,有些S没有t等等问题
    prediction[:, 2] -= np.min(prediction[:, 2])    # 向上偏移min(prediction[:, 2]),作用是把坐标变为正数
    print('prediction')
    print(prediction)   # 打印画图的3d坐标
    plt.figure()
    ax = plt.subplot(111, projection='3d')  # 创建一个三维的绘图工程
    o_x = prediction[:, 0]
    o_y = prediction[:, 1]
    o_z = prediction[:, 2]
    print(o_x)
    print(o_y)
    print(o_z)
    ax.scatter(o_x, o_y, o_z)

    temp = o_x
    x = [temp[9], temp[8], temp[7], temp[10], temp[11], temp[12]]
    temp = o_y
    y = [temp[9], temp[8], temp[7], temp[10], temp[11], temp[12]]
    temp = o_z
    z = [temp[9], temp[8], temp[7], temp[10], temp[11], temp[12]]
    ax.plot(x, y, z)

    temp = o_x
    x = [temp[7], temp[0], temp[4], temp[5], temp[6]]
    temp = o_y
    y = [temp[7], temp[0], temp[4], temp[5], temp[6]]
    temp = o_z
    z = [temp[7], temp[0], temp[4], temp[5], temp[6]]
    ax.plot(x, y, z)

    temp = o_x
    x = [temp[0], temp[1], temp[2], temp[3]]
    temp = o_y
    y = [temp[0], temp[1], temp[2], temp[3]]
    temp = o_z
    z = [temp[0], temp[1], temp[2], temp[3]]
    ax.plot(x, y, z)

    temp = o_x
    x = [temp[7], temp[13], temp[14], temp[15]]
    temp = o_y
    y = [temp[7], temp[13], temp[14], temp[15]]
    temp = o_z
    z = [temp[7], temp[13], temp[14], temp[15]]
    ax.plot(x, y, z)

    # temp = o_x
    # x = [temp[0], temp[14]]
    # temp = o_y
    # y = [temp[0], temp[14]]
    # temp = o_z
    # z = [temp[0], temp[14]]
    # ax.plot(y, x, z)
    #
    # temp = o_x
    # x = [temp[0], temp[15]]
    # temp = o_y
    # y = [temp[0], temp[15]]
    # temp = o_z
    # z = [temp[0], temp[15]]
    # ax.plot(y, x, z)

    # 改变坐标比例的代码,该代码的效果是z坐标轴是其他坐标的两倍
    from matplotlib.pyplot import MultipleLocatort
    major_locator = MultipleLocator(0.5)
    ax.xaxis.set_major_locator(major_locator)
    ax.yaxis.set_major_locator(major_locator)
    ax.zaxis.set_major_locator(major_locator)
    ax.get_proj = lambda: np.dot(Axes3D.get_proj(ax), np.diag([0.5, 0.5, 1, 1]))

    plt.show()
class SemGCMDriver:
    def __init__(self, args, device, skeleton):
        print("Initialize SemGCMDriver - begin.")
        from models.sem_gcn import SemGCN
        from common.graph_utils import adj_mx_from_skeleton
        self.hid_dim = args.sem_hid_dim
        self.num_layers = args.sem_num_layers
        self.p_dropout = (None
                          if args.sem_dropout == 0.0 else args.sem_dropout)
        self.render_score_threshold = args.render_score_threshold
        self.skeleton = skeleton
        adj = adj_mx_from_skeleton(self.skeleton)
        self.device = device
        self.model_pos = SemGCN(adj,
                                self.hid_dim,
                                num_layers=self.num_layers,
                                p_dropout=self.p_dropout,
                                nodes_group=self.skeleton.joints_group()).to(
                                    self.device.device)
        self.last_2d_positions = None
        self.last_3d_positions = None
        self.last_scores = None
        self.render_3d = args.sem_show_3d
        self._plot = args.sem_plot
        self._plot_initalized = False
        self._plot_skeleton = None
        self.last_3d_skeletons = None

        # Resume from a checkpoint
        ckpt_path = args.sem_evaluate
        if path.isfile(ckpt_path):
            print("==> Loading checkpoint '{}'".format(ckpt_path))
            self.ckpt = torch.load(ckpt_path)
            self.rename_nonlocal_node(self.ckpt)
            start_epoch = self.ckpt['epoch']
            error_best = self.ckpt['error']
            self.model_pos.load_state_dict(self.ckpt['state_dict'])
            print("==> Loaded checkpoint (Epoch: {} | Error: {})".format(
                start_epoch, error_best))
        else:
            raise RuntimeError(
                "==> No checkpoint found at '{}'".format(ckpt_path))

        if self._plot:
            size = 5
            radius = 1
            azim = 45
            title = "test"
            plt.ion()
            fig = plt.figure(figsize=(size, size))
            self._plot_ax = fig.add_subplot(1, 1, 1, projection='3d')
            self._plot_ax.view_init(elev=15., azim=azim)
            self._plot_ax.set_xlim3d([-radius / 2, radius / 2])
            self._plot_ax.set_zlim3d([0, radius])
            self._plot_ax.set_ylim3d([-radius / 2, radius / 2])
            self._plot_ax.set_aspect('auto')
            self._plot_ax.set_xticklabels([])
            self._plot_ax.set_yticklabels([])
            self._plot_ax.set_zticklabels([])
            self._plot_ax.dist = 7.5
            self._plot_ax.set_title(title)  # , pad=35

        print("Initialize SemGCMDriver - end.")

    def update(self, mmpose):
        self.last_2d_positions, self.last_scores = mmpose.getLastPoseResult()
        self.last_3d_positions = None
        if self.last_2d_positions is None:
            return
        self.last_3d_positions = []
        for input2d in self.last_2d_positions:
            result = self.model_pos(input2d).cpu()
            self.last_3d_positions.append(result)

        self.last_3d_skeletons = []
        for index, position in enumerate(self.last_3d_positions):
            skeleton = []
            for node, parent in enumerate(self.skeleton._parents):
                if parent < 0:
                    continue
                n = [
                    position[0][node][0], position[0][node][1],
                    position[0][node][2]
                ]
                p = [
                    position[0][parent][0], position[0][parent][1],
                    position[0][parent][2]
                ]
                line = [
                    n, p,
                    [
                        self.last_scores[index][node],
                        self.last_scores[index][parent]
                    ]
                ]
                skeleton.append(line)
            self.last_3d_skeletons.append(skeleton)

    def render(self, img):
        img = self.__render_3d(img)
        return img

    def plotting(self):
        if not self._plot:
            return
        if not self.last_3d_skeletons:
            return

        if not self._plot_skeleton:
            for skeleton in self.last_3d_skeletons:
                self._plot_skeleton = []
                for line in skeleton:
                    clr = '#a0a0a0'
                    if line[2][0] > self.render_score_threshold and line[2][
                            1] > self.render_score_threshold:
                        clr = 'black'
                    self._plot_skeleton.append(
                        self._plot_ax.plot([line[0][0], line[1][0]],
                                           [line[0][1], line[1][1]],
                                           [line[0][2], line[1][2]],
                                           zdir='z',
                                           color=clr))
                break
        else:
            for si, skeleton in enumerate(self.last_3d_skeletons):
                for li, line in enumerate(skeleton):
                    clr = '#a0a0a0'
                    if line[2][0] > self.render_score_threshold and line[2][
                            1] > self.render_score_threshold:
                        clr = 'black'
                    self._plot_skeleton[li][0].set_xdata(
                        np.array([line[0][0], line[1][0]]))
                    self._plot_skeleton[li][0].set_ydata(
                        np.array([line[0][2], line[1][2]]))
                    self._plot_skeleton[li][0].set_3d_properties(
                        [line[0][1], line[1][1]], zdir='z')
                    self._plot_skeleton[li][0].set_color(clr)
                break

        plt.draw()
        plt.pause(0.01)

    def __render_3d(self, img):
        if self.render_3d and self.last_3d_skeletons:
            for skeleton in self.last_3d_skeletons:
                for line in skeleton:
                    color = (255, 0, 0)
                    if line[2][0] > self.render_score_threshold and line[2][
                            1] > self.render_score_threshold:
                        color = (255, 255, 0)
                    nx = line[0][0] * 100 + 100
                    ny = line[0][1] * 100 + 100
                    px = line[1][0] * 100 + 100
                    py = line[1][1] * 100 + 100
                    cv2.line(img, (nx, ny), (px, py), color, 1)
                break
        return img

    def rename_nonlocal_node(self, dic):
        if 'items' not in dir(dic):
            return
        targets = []
        for key, value in dic.items():
            if type(key) == str:
                if '.nonlocal.' in key:
                    targets.append(key)
            self.rename_nonlocal_node(value)
        for key in targets:
            value = dic.pop(key)
            key = key.replace('.nonlocal.', '._nonlocal.')
            dic[key] = value

    def term(self):
        if self._plot:
            plt.ioff()