from utils.utils import load_data
from utils.utils import from_csv_with_filenames
from utils.constants import Constants
from sklearn.externals import joblib
import os
import logging
import numpy as np

csv_path = os.path.join(Constants.DATA_FOLDER, '10classes', 'audio_data.csv')
LOAD = True

if __name__ == '__main__':
    logging.info('Loading data')
    xs, ys, filenames = from_csv_with_filenames(csv_path)
    ys = [int(y) - 1000 for y in ys]
    vect_size = len(xs[0])
    audio_som = SOM(20,
                    30,
                    vect_size,
                    n_iterations=100,
                    checkpoint_dir=os.path.join(Constants.DATA_FOLDER,
                                                '10classes', 'audio_model',
                                                ''))
    if not LOAD:
        audio_som.train(xs)
    else:
        logging.info('Training som')
        audio_som.restore_trained()
    #audio_som.plot_som(xs, ys, plot_name='audio_som.png')
    showSom(audio_som, xs, ys, 1, 'Audio Map', filenames=filenames)
Exemple #2
0
from models.som.SOM import SOM
from models.som.SOMTest import showSom
import numpy as np
from utils.constants import Constants
from utils.utils import from_csv_visual
from sklearn.preprocessing import MinMaxScaler
import os
import logging

visual_data_path = os.path.join(Constants.DATA_FOLDER, '10classes',
                                'VisualInputTrainingSet.csv')
N = 1000
lenExample = 2048

if __name__ == '__main__':
    v_xs, v_ys = from_csv_visual(visual_data_path)
    v_xs = MinMaxScaler().fit_transform(v_xs)

    som = SOM(20,
              30,
              lenExample,
              checkpoint_dir=os.path.join(Constants.DATA_FOLDER,
                                          'visual_model_mine', ''),
              n_iterations=100,
              sigma=4.0)

    som.restore_trained()

    showSom(som, v_xs, v_ys, 1, 'Visual map')
Exemple #3
0
    nameInputs = list()
    with open(fInput, 'r') as inp:
        i = 0
        for line in inp:
            if len(line) > 2:
                inputs[i] = (np.array(line.split(',')[1:])).astype(np.float)
                nameInputs.append((line.split(',')[0]).split('/')[6])
                i = i + 1

    print(nameInputs[0])

    #get the 20x30 SOM or train a new one (if the folder does not contain the model)
    som = SOM(20,
              30,
              lenExample,
              checkpoint_dir=os.path.join(Constants.DATA_FOLDER,
                                          'VisualModel10classes/'),
              n_iterations=20,
              sigma=4.0)

    loaded = som.restore_trained()
    if not loaded:
        logging.info('Training SOM')
        som.train(inputs)

    for k in range(len(nameInputs)):
        nameInputs[k] = nameInputs[k].split('_')[0]

    #shows the SOM
    showSom(som, inputs, nameInputs, 1, 'Visual map')