Exemple #1
0
    def post(self):

        K.clear_session()
        model, graph = init_model()
        hashtag = session.get('hashtag')
        tokenized = session.get('tokenized')

        # for table display
        tweets = TweetsModel.find_by_hashtag(hashtag=hashtag)
        tweets = [element.tweet for element in tweets]

        # apply model
        predictions = []
        with graph.as_default():
            for element in tokenized:
                element = pad_sequences(element, maxlen=23, dtype='int32', value=0)
                prediction = model.predict(element, batch_size=1, verbose=2)[0]
                if (np.argmax(prediction) == 0):
                    prediction = 'Negative'
                elif (np.argmax(prediction) == 1):
                    prediction = 'Neutral'
                else:
                    prediction = 'Positive'
                predictions.append(prediction)

        # zip predictions with ORIGINAL tweet for better clarity
        sentiment_predictions = list(zip(tweets, predictions))
        sentiment_counter = dict(Counter(predictions))

        return {'sentiment_predictions': sentiment_predictions, 'sentiment_counter': sentiment_counter,
                'hashtag': hashtag}
Exemple #2
0
def manage_db():
    """Manage Databases View"""
    mongo_hashtags = Collection.hashtags()
    sqlite_hashtags = TweetsModel.distinct_hashtags()
    return render_template('manage_db/dashboard.html',
                           mongo_hashtags=mongo_hashtags,
                           sqlite_hashtags=sqlite_hashtags)
def manage_db():
    """Manage Databases View"""
    for attempt in range(0, 3):
        try:
            mongo_hashtags = Collection.hashtags()
        except AutoReconnect:
            time.sleep(2)
    sqlite_hashtags = TweetsModel.distinct_hashtags()
    return render_template('manage_db/dashboard.html',
                           mongo_hashtags=mongo_hashtags,
                           sqlite_hashtags=sqlite_hashtags)
    def post(self):

        hashtag = request.form.get('hashtag_cleaning')

        # Prevent overpopulating
        TweetsModel.delete_by_hashtag(hashtag=hashtag)

        if hashtag is None:
            return redirect('trendsearch', message="hashtag was not specified")

        # Get chosen hashtag tweets
        hashtag_tweets = Collection.find_by_hashtag(hashtag=hashtag)

        # Preprocess text for future senitment analysis
        text = [element['text'] for element in hashtag_tweets]

        corpus = []
        for i in range(0, len(text)):
            try:
                tweet = re.sub('[^a-zA-Z]', ' ', text[i])  ## all the indexes
                tweet = tweet.lower()
                tweet = tweet.split()
                ps = PorterStemmer()
                tweet = [
                    ps.stem(word) for word in tweet if not word in stopwords
                ]
                tweet = ' '.join(tweet)
                corpus.append(tweet)
                new_tweet = TweetsModel(hashtag=hashtag, tweet=tweet)
                new_tweet.save_to_db()
            except Exception as e:
                pass

        return redirect('manage_db')
Exemple #5
0
    def post(self):
        hashtag = request.form.get('hashtag')

        # for backend sentiment analysis
        hashtag_tweets = TweetsModel.find_by_hashtag(hashtag=hashtag)
        hashtag_tweets = [element.tweet for element in hashtag_tweets]

        # load pickled tokenizer
        with open(tokenizer_path, 'rb') as handle:
            tokenizer = pickle.load(handle)

        # preprocess data for prediction
        tokenized = []
        for element in hashtag_tweets:
            element = element.split()
            element = tokenizer.texts_to_sequences(element)
            tokenized.append(element)
        session['tokenized'] = tokenized
        session['hashtag'] = hashtag
        return hashtag
Exemple #6
0
def sentiment_analysis():
    """Apply LSTM View"""
    sqlite_hashtags = TweetsModel.distinct_hashtags()
    return render_template('sentiment_analysis/dashboard.html',
                           sqlite_hashtags=sqlite_hashtags)
 def post(self):
     hashtag = request.form.get('hashtag_table')
     TweetsModel.delete_by_hashtag(hashtag=hashtag)
     return redirect('manage_db')