Exemple #1
0
def train():

    model = VAE()
    loss_fn = NegativeELBO()
    optimizer = Adam(model.parameters(),lr=0.001)
    dataloader = Mnist()
    model.to(device)

    for i in range(30):
        tots = 0
        for batch_id,(x,_) in enumerate(dataloader):
            if torch.Size([784,0]) == x.shape:
                break
            x = x.t()
            optimizer.zero_grad()
            
            out,mean,log_variance = model(x)
            
            loss = loss_fn(x,out,mean,log_variance)
            loss.backward()
            optimizer.step()

            tots+=loss.item()

            if(batch_id%50==0):
                print(batch_id,loss.item()/100,"\t",tots/(batch_id*100+1))

        print("\n",i,tots/60000,"\n")
        torch.save(model.state_dict(),"weights/vae/z25.pth")
def hvae_from_args(args):
    if (args.net_type == 'vae'):
        net = VAE(latent_size=args.latent_size,
                  img_size=args.IM_SIZE,
                  layer_sizes=args.layer_sizes)
        sizes_str = "_".join(str(x) for x in args.layer_sizes)
        file_name = 'VAE-' + str(sizes_str) + '-' + str(
            args.latent_size) + '-' + str(args.dataset)

    if (args.net_type == 'CVAE_ART'):
        net = CVAE_ART(latent_size=args.latent_size,
                       img_size=args.IM_SIZE,
                       num_labels=args.num_labels)
        file_name = 'CVAE_ART-' + str(args.latent_size) + '-' + str(
            args.IM_SIZE)

    elif (args.net_type == 'ConvVAE2d'):
        if (args.small_net_type == 'CVAE_SMALL'):
            small_net = CVAE_SMALL(latent_size=args.latent_size_small_vae,
                                   img_size=args.cvae_input_sz,
                                   num_labels=args.num_labels)

        net = ConvVAE2d(cvae_small=small_net,
                        cvae_input_sz=args.cvae_input_sz,
                        stride=args.stride,
                        img_size=args.IM_SIZE)
        file_name = 'ConvVAE2d-' + str(args.IM_SIZE) + '-' + str(
            args.stride) + '-' + str(args.cvae_input_sz) + '-' + str(
                args.latent_size_small_vae)
    else:
        print('Error : Wrong net type')
        sys.exit(0)
    return net, file_name
def init_model(args):
    if args.flow == 'no_flow':
        model = VAE(args).to(args.device)
    elif args.flow == 'boosted':
        model = BoostedVAE(args).to(args.device)
    elif args.flow == 'planar':
        model = PlanarVAE(args).to(args.device)
    elif args.flow == 'radial':
        model = RadialVAE(args).to(args.device)
    elif args.flow == 'liniaf':
        model = LinIAFVAE(args).to(args.device)
    elif args.flow == 'affine':
        model = AffineVAE(args).to(args.device)
    elif args.flow == 'nlsq':
        model = NLSqVAE(args).to(args.device)
    elif args.flow == 'iaf':
        model = IAFVAE(args).to(args.device)
    elif args.flow == "realnvp":
        model = RealNVPVAE(args).to(args.device)
    elif args.flow == 'orthogonal':
        model = OrthogonalSylvesterVAE(args).to(args.device)
    elif args.flow == 'householder':
        model = HouseholderSylvesterVAE(args).to(args.device)
    elif args.flow == 'triangular':
        model = TriangularSylvesterVAE(args).to(args.device)
    else:
        raise ValueError('Invalid flow choice')

    return model
Exemple #4
0
def main(_):
    
    if FLAGS.network == 'vae':
        model = VAE(mode=FLAGS.mode, batch_size=FLAGS.batch_size, latent_dim=FLAGS.latent_dim)
        solver = VAE_Solver(model, batch_size=FLAGS.batch_size, train_iter=FLAGS.train_iter, log_dir=FLAGS.log_save_path,
                        model_save_path=FLAGS.model_save_path, sample_save_path=FLAGS.sample_save_path)
        
        # create directories if not exist
        if not tf.gfile.Exists(FLAGS.model_save_path):
            tf.gfile.MakeDirs(FLAGS.model_save_path)
        if not tf.gfile.Exists(FLAGS.sample_save_path):
            tf.gfile.MakeDirs(FLAGS.sample_save_path)
        
        if FLAGS.mode == 'train':
            solver.train()
        elif FLAGS.mode == 'reconstruct':
            solver.reconstruct()
        elif FLAGS.mode == 'sample':
            solver.sample()
        elif FLAGS.mode == 'encode':
            solver.encode()

    elif FLAGS.network == 'gan':
        z_dim = 100
        model = GAN(mode=FLAGS.mode)
        solver = GAN_Solver(model, batch_size=FLAGS.batch_size, z_dim=z_dim, train_iter=FLAGS.train_iter, log_dir=FLAGS.log_save_path,
                        model_save_path=FLAGS.model_save_path, sample_save_path=FLAGS.sample_save_path)
        
        # create directories if not exist
        if not tf.gfile.Exists(FLAGS.model_save_path):
            tf.gfile.MakeDirs(FLAGS.model_save_path)
        if not tf.gfile.Exists(FLAGS.sample_save_path):
            tf.gfile.MakeDirs(FLAGS.sample_save_path)
        
        if FLAGS.mode == 'train':
            solver.train()
        elif FLAGS.mode == 'sample':
            solver.sample()

    elif FLAGS.network == 'acgan':
        z_dim = 128
        feature_class = 'Smiling'
        model = ACGAN(mode=FLAGS.mode, batch_size=FLAGS.batch_size)
        solver = ACGAN_Solver(model, batch_size=FLAGS.batch_size, z_dim=z_dim, feature_class=feature_class, 
                        train_iter=FLAGS.train_iter, log_dir=FLAGS.log_save_path,
                        model_save_path=FLAGS.model_save_path, sample_save_path=FLAGS.sample_save_path)
        
        # create directories if not exist
        if not tf.gfile.Exists(FLAGS.model_save_path):
            tf.gfile.MakeDirs(FLAGS.model_save_path)
        if not tf.gfile.Exists(FLAGS.sample_save_path):
            tf.gfile.MakeDirs(FLAGS.sample_save_path)
        
        if FLAGS.mode == 'train':
            solver.train()
        elif FLAGS.mode == 'sample':
            solver.sample()
def main():
    parser = argparse.ArgumentParser()
    # parser.add_argument('--env-type', default='gridworld')
    # parser.add_argument('--env-type', default='point_robot_sparse')
    # parser.add_argument('--env-type', default='cheetah_vel')
    # parser.add_argument('--env-type', default='ant_semicircle_sparse')
    parser.add_argument('--env-type', default='point_robot_wind')
    # parser.add_argument('--env-type', default='escape_room')

    args, rest_args = parser.parse_known_args()
    env = args.env_type

    # --- GridWorld ---
    if env == 'gridworld':
        args = args_gridworld.get_args(rest_args)
    # --- PointRobot ---
    elif env == 'point_robot_sparse':
        args = args_point_robot_sparse.get_args(rest_args)
    elif env == 'escape_room':
        args = args_point_robot_barrier.get_args(rest_args)
    elif env == 'point_robot_wind':
        args = args_point_robot_rand_params.get_args(rest_args)
    # --- Mujoco ---
    elif env == 'cheetah_vel':
        args = args_cheetah_vel.get_args(rest_args)
    elif env == 'ant_semicircle_sparse':
        args = args_ant_semicircle_sparse.get_args(rest_args)

    set_gpu_mode(torch.cuda.is_available() and args.use_gpu)

    args, env = off_utl.expand_args(args)

    dataset, goals = off_utl.load_dataset(data_dir=args.data_dir, args=args, arr_type='numpy')
    # dataset, goals = off_utl.load_dataset(args)
    if args.hindsight_relabelling:
        print('Perform reward relabelling...')
        dataset, goals = off_utl.mix_task_rollouts(dataset, env, goals, args)

    if args.policy_replaying:
        mix_dataset, mix_goals = off_utl.load_replaying_dataset(data_dir=args.replaying_data_dir, args=args)
        print('Perform policy replaying...')
        dataset, goals = off_utl.mix_policy_rollouts(dataset, goals, mix_dataset, mix_goals, args)

    # vis test tasks
    # vis_train_tasks(env.unwrapped, goals)     # not with GridNavi

    if args.save_model:
        dir_prefix = args.save_dir_prefix if hasattr(args, 'save_dir_prefix') \
                                             and args.save_dir_prefix is not None else ''
        args.full_save_path = os.path.join(args.save_dir, args.env_name,
                                           dir_prefix + datetime.datetime.now().strftime('__%d_%m_%H_%M_%S'))
        os.makedirs(args.full_save_path, exist_ok=True)
        config_utl.save_config_file(args, args.full_save_path)

    vae = VAE(args)
    train(vae, dataset, goals, args)
 def _build_vae(self):
     vae = VAE(hidden_units=512,
               latent_space_dim=100,
               num_input_channels=self._num_input_channels,
               conditional=self.conditional,
               num_labels=self.num_labels,
               device=self.device)
     if self.checkpoint_path is not None:
         vae.load_state_dict(torch.load(self.checkpoint_path))
     vae.to(device=self.device)
     return vae
Exemple #7
0
    def __init__(self, timelimit, pop_size, device):
        self.pop_size = pop_size
        self.truncation_threshold = int(pop_size /
                                        2)  # Should be dividable by two
        self.P = []

        # unique GA id
        self.init_time = datetime.now().strftime("%Y%m%d_%H%M%S")

        # load configuration params
        with open('config/creature.json') as f:
            config = json.load(f)
            model_fromdisk = config.get('vae.model.fromdisk')
            model_path = config.get('vae.model.path')

            latent_size = config.get('vae.latent.size')
            obs_size = config.get('vae.obs.size')
            num_effectors = config.get('joints.size') + config.get(
                'brushes.size')
            input_size = latent_size + num_effectors
            output_size = num_effectors

            cpg_enabled = config.get('cpg.enabled')
            if cpg_enabled:
                input_size += 1
                output_size += 1

        # load vision module
        from models.vae import VAE
        vae = VAE(latent_size).cuda()

        if model_fromdisk:
            vae.load_state_dict(torch.load(model_path))
            vae.eval()  # inference mode
            print(f'Loaded VAE model {model_path} from disk')

        print(f'Generating initial population of {pop_size} candidates...')

        # initialize population
        from train import GAIndividual
        for _ in range(pop_size):
            self.P.append(
                GAIndividual(self.init_time,
                             input_size,
                             output_size,
                             obs_size,
                             compressor=vae,
                             cpg_enabled=cpg_enabled,
                             device=device,
                             time_limit=timelimit))

        # report controller parameters
        self.num_controller_params = input_size * output_size + output_size
        print(f'Number of controller parameters: {self.num_controller_params}')
Exemple #8
0
def offline_experiment(doodad_config, variant):
    save_doodad_config(doodad_config)
    parser = argparse.ArgumentParser()
    # parser.add_argument('--env-type', default='gridworld')
    # parser.add_argument('--env-type', default='point_robot_sparse')
    # parser.add_argument('--env-type', default='cheetah_vel')
    parser.add_argument('--env-type', default='ant_semicircle_sparse')
    args, rest_args = parser.parse_known_args(args=[])
    env = args.env_type

    # --- GridWorld ---
    if env == 'gridworld':
        args = args_gridworld.get_args(rest_args)
    # --- PointRobot ---
    elif env == 'point_robot_sparse':
        args = args_point_robot_sparse.get_args(rest_args)
    # --- Mujoco ---
    elif env == 'cheetah_vel':
        args = args_cheetah_vel.get_args(rest_args)
    elif env == 'ant_semicircle_sparse':
        args = args_ant_semicircle_sparse.get_args(rest_args)

    set_gpu_mode(torch.cuda.is_available() and args.use_gpu)

    vae_args = config_utl.load_config_file(
        os.path.join(args.vae_dir, args.env_name, args.vae_model_name,
                     'online_config.json'))
    args = config_utl.merge_configs(
        vae_args, args)  # order of input to this function is important

    # Transform data BAMDP (state relabelling)
    if args.transform_data_bamdp:
        # load VAE for state relabelling
        vae_models_path = os.path.join(args.vae_dir, args.env_name,
                                       args.vae_model_name, 'models')
        vae = VAE(args)
        off_utl.load_trained_vae(vae, vae_models_path)
        # load data and relabel
        save_data_path = os.path.join(args.main_data_dir, args.env_name,
                                      args.relabelled_data_dir)
        os.makedirs(save_data_path)
        dataset, goals = off_utl.load_dataset(data_dir=args.data_dir,
                                              args=args,
                                              arr_type='numpy')
        bamdp_dataset = off_utl.transform_mdps_ds_to_bamdp_ds(
            dataset, vae, args)
        # save relabelled data
        off_utl.save_dataset(save_data_path, bamdp_dataset, goals)

    learner = OfflineMetaLearner(args)

    learner.train()
Exemple #9
0
def test_vae(image_shape, batch_size=128, hid_dim=2):
    x = torch.zeros(batch_size, *image_shape)

    encoder = VAE(image_shape, hid_dim)
    mean_image, sampled_image, logits, z, mean, stddev = encoder(x)

    assert mean_image.shape == x.shape
    assert sampled_image.shape == x.shape
    assert logits.shape == x.shape

    assert z.shape == (batch_size, hid_dim)
    assert mean.shape == (batch_size, hid_dim)
    assert stddev.shape == (batch_size, hid_dim)
Exemple #10
0
    def __init__(self, directory):
        vae_file = join(directory, 'vae', 'best.tar')
        rnn_file = join(directory, 'mdrnn', 'best.tar')
        assert exists(vae_file), "No VAE model in the directory..."
        assert exists(rnn_file), "No MDRNN model in the directory..."

        # spaces
        self.action_space = spaces.Box(np.array([-1, 0, 0]),
                                       np.array([1, 1, 1]))
        self.observation_space = spaces.Box(low=0,
                                            high=255,
                                            shape=(RED_SIZE, RED_SIZE, 3),
                                            dtype=np.uint8)

        # load VAE
        vae = VAE(3, LSIZE)
        vae_state = torch.load(vae_file,
                               map_location=lambda storage, location: storage)
        print("Loading VAE at epoch {}, "
              "with test error {}...".format(vae_state['epoch'],
                                             vae_state['precision']))
        vae.load_state_dict(vae_state['state_dict'])
        self._decoder = vae.decoder

        # load MDRNN
        self._rnn = MDRNNCell(32, 3, RSIZE, 5)
        rnn_state = torch.load(rnn_file,
                               map_location=lambda storage, location: storage)
        print("Loading MDRNN at epoch {}, "
              "with test error {}...".format(rnn_state['epoch'],
                                             rnn_state['precision']))
        rnn_state_dict = {
            k.strip('_l0'): v
            for k, v in rnn_state['state_dict'].items()
        }
        self._rnn.load_state_dict(rnn_state_dict)

        # init state
        self._lstate = torch.randn(1, LSIZE)
        self._hstate = 2 * [torch.zeros(1, RSIZE)]

        # obs
        self._obs = None
        self._visual_obs = None

        # rendering
        self.monitor = None
        self.figure = None
Exemple #11
0
    def __init__(self, num_epochs=50, batch_size=512, lr=1e-3, data_path=None, \
        ckpt_save_path='.', model_type='cnn', schedule=0, gamma=0.5,  train_mode='default'):
        self.train_mode = train_mode
        self.ckpt_save_path = ckpt_save_path
        print(f'Checkpoints will be stored at {ckpt_save_path}')
        """ Hyperparameters """
        self.num_epochs = num_epochs
        self.batch_size = batch_size
        self.lr = lr
        self.criterion = nn.MSELoss()
        """ Set up DataLoader & Sampler """
        x = torch.from_numpy(data_path)
        self.dataset = CustomTensorDataset(x)

        t_len = int(len(self.dataset) * 0.9)
        v_len = len(self.dataset) - t_len
        train_set, valid_set = random_split(self.dataset, [t_len, v_len])
        print(
            f'Train set: {len(train_set)} | Validation set: {len(valid_set)}')
        self.train_sampler = RandomSampler(train_set)
        self.valid_sampler = SequentialSampler(valid_set)
        self.train_dataloader = DataLoader(train_set,
                                           sampler=self.train_sampler,
                                           batch_size=self.batch_size)
        self.valid_dataloader = DataLoader(valid_set,
                                           sampler=self.valid_sampler,
                                           batch_size=self.batch_size)
        """ Select model """
        model_choices = {
            'cnn': CNN_AutoEncoder(),
            'vae': VAE(),
        }
        self.model_type = model_type
        self.model = model_choices[self.model_type].cuda()
        print(f'Training model: {model_type}')
        self.optimizer = Adam(self.model.parameters(), lr=self.lr)
        self.scheduler = None
        self.schedule = schedule
        self.gamma = gamma
        if schedule != 0:  # Enable lr_scheduler
            self.scheduler = lr_scheduler.StepLR(self.optimizer,
                                                 step_size=self.schedule,
                                                 gamma=self.gamma)
            print(
                f"Enabled lr_scheduler with step_size={schedule}, gamma={gamma}"
            )
Exemple #12
0
def check():
    noise = torch.randn((100,32))    

    model = VAE()
    model.load_state_dict(torch.load("weights/vae/z25.pth"))

    out = model.decoder(noise)

    fig, ax = plt.subplots(nrows=10, ncols=10)

    plt.axis('off')
    i=0
    for row in ax:
        for col in row:
            col.imshow(out[i].view(28,28).detach().cpu().numpy(),cmap='gray')
            col.set_axis_off()
            i+=1

    plt.show()
def load_net(model_loc, args=None):
    model_file = Path(model_loc).name
    model_name = model_file.split('-')[0]

    if (model_name == 'CVAE'):
        model = CVAE(
            num_labels=int(model_file.split('-')[4].split('_')[0]),
            latent_size=int(model_file.split('-')[2]),
            img_size=32,
            layer_sizes=[int(i) for i in model_file.split('-')[1].split('_')])
    elif (model_name == 'VAE'):
        model = VAE(
            latent_size=int(model_file.split('-')[2]),
            img_size=32,
            layer_sizes=[int(i) for i in model_file.split('-')[1].split('_')])

    elif (model_name == 'FEAT_VAE_MNIST'):
        model = FEAT_VAE_MNIST(
            classifier_model=load_net(args.encoding_model_loc).to(args.device),
            num_features=int(model_file.split('-')[2].split('_')[0]),
            latent_size=int(model_file.split('-')[1].split('_')[0]))

    elif (model_name == 'ConvVAE2d'):
        latent_size_small_vae = int(model_file.split('-')[4].split('_')[0])
        cvae_input_sz = int(model_file.split('-')[3])
        stride = int(model_file.split('-')[2])
        IM_SIZE = int(model_file.split('-')[1])

        small_net = CVAE_SMALL(latent_size=latent_size_small_vae,
                               img_size=cvae_input_sz,
                               num_labels=11)

        model = ConvVAE2d(cvae_small=small_net,
                          cvae_input_sz=cvae_input_sz,
                          stride=stride,
                          img_size=IM_SIZE)

    else:
        print(f'Error : {model_file} not found')
        sys.exit(0)
    model.load_state_dict(torch.load(model_loc)['state_dict'])
    return model
Exemple #14
0
def main():
    flags = tf.flags
    flags.DEFINE_integer("latent_dim", 64, "Dimension of latent space.")
    flags.DEFINE_integer("obs_dim", 12288, "Dimension of observation space.")
    flags.DEFINE_integer("batch_size", 64, "Batch size.")
    flags.DEFINE_integer("epochs", 500, "As it said")
    flags.DEFINE_integer(
        "updates_per_epoch", 100,
        "Really just can set to 1 if you don't like mini-batch.")
    FLAGS = flags.FLAGS

    kwargs = {
        'latent_dim': FLAGS.latent_dim,
        'batch_size': FLAGS.batch_size,
        'observation_dim': FLAGS.obs_dim,
        'encoder': conv_anime_encoder,
        'decoder': conv_anime_decoder,
        'observation_distribution': 'Gaussian'
    }
    vae = VAE(**kwargs)
    provider = Anime()
    tbar = tqdm(range(FLAGS.epochs))
    for epoch in tbar:
        training_loss = 0.

        for _ in range(FLAGS.updates_per_epoch):
            x = provider.next_batch(FLAGS.batch_size)
            loss = vae.update(x)
            training_loss += loss

        training_loss /= FLAGS.updates_per_epoch
        s = "Loss: {:.4f}".format(training_loss)
        tbar.set_description(s)

    z = np.random.normal(size=[FLAGS.batch_size, FLAGS.latent_dim])
    samples = vae.z2x(z)[0]
    show_samples(samples, 8, 8, [64, 64, 3], name='samples')

    vae.save_generator('weights/vae_anime/generator')
Exemple #15
0
def main():
    flags = tf.flags
    flags.DEFINE_integer("latent_dim", 2, "Dimension of latent space.")
    flags.DEFINE_integer("batch_size", 128, "Batch size.")
    flags.DEFINE_integer("epochs", 500, "As it said")
    flags.DEFINE_integer("updates_per_epoch", 100, "Really just can set to 1 if you don't like mini-batch.")
    flags.DEFINE_string("data_dir", 'mnist', "Tensorflow demo data download position.")
    FLAGS = flags.FLAGS

    kwargs = {
        'latent_dim': FLAGS.latent_dim,
        'batch_size': FLAGS.batch_size,
        'encoder': fc_mnist_encoder,
        'decoder': fc_mnist_decoder
    }
    vae = VAE(**kwargs)
    mnist = input_data.read_data_sets(train_dir=FLAGS.data_dir)
    tbar = tqdm(range(FLAGS.epochs))
    for epoch in tbar:
        training_loss = 0.

        for _ in range(FLAGS.updates_per_epoch):
            x, _ = mnist.train.next_batch(FLAGS.batch_size)
            loss = vae.update(x)
            training_loss += loss

        training_loss /= FLAGS.updates_per_epoch
        s = "Loss: {:.4f}".format(training_loss)
        tbar.set_description(s)

    z = np.random.normal(size=[FLAGS.batch_size, FLAGS.latent_dim])
    samples = vae.z2x(z)[0]
    show_samples(samples, 10, 10, [28, 28], name='samples')
    show_latent_scatter(vae, mnist, name='latent')

    vae.save_generator('weights/vae_mnist/generator')
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable

from models import *
from utils import *
from train import *
from models.vae import VAE 

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

SOS_token = 0 # Start Of Sentence token
EOS_token = 1 # End Of Sentence token
MAX_LENGTH = 16
max_length = 16

if __name__ =='__main__':
    #----------Hyper Parameters----------#
    hidden_size = 256
    cond_size = 4
    latent_size = 32
    vocab_size = 28 #The number of vocabulary

    vae = VAE(vocab_size, hidden_size, latent_size, cond_size, vocab_size).to(device)

    words, tenses = prepare_data()
    data = MyData()
    data_loader = DataLoader(data, batch_size=32, shuffle=True, collate_fn=collate_fn)

    history = trainEpochs(vae, data_loader, n_epochs=5000, learning_rate=0.001, verbose=False)
    save_model(vae, model_name='vae_5000')
# constants
ASIZE = 1
BSIZE = 16
SEQ_LEN = 140  # 4 seconds
LSIZE = 64
RSIZE = 512
epochs = 200

# Load VAE
vae_file = join(args.originallogdir, 'vae', 'best.tar')
assert exists(vae_file), "No trained VAE in the originallogdir..."
state = torch.load(vae_file, map_location={'cuda:0': str(device)})
print("Loading VAE at epoch {} "
      "with test error {}".format(state['epoch'], state['precision']))
vae = VAE(3, LSIZE).to(device)
vae.load_state_dict(state['state_dict'])
vae_optimizer = torch.optim.Adam(vae.parameters())
vae_scheduler = ReduceLROnPlateau(vae_optimizer, 'min', factor=0.5, patience=5)

# Load RNN
rnn_dir = join(args.originallogdir, 'mdrnn')
rnn_file = join(rnn_dir, 'best.tar')
assert exists(rnn_file), 'No trained MDNRNN in the originallogdir...'
mdrnn = MDRNN(LSIZE, ASIZE, RSIZE, 5)
mdrnn.to(device)
mdrnn_optimizer = torch.optim.RMSprop(mdrnn.parameters(), lr=1e-3, alpha=.9)
mdrnn_scheduler = ReduceLROnPlateau(mdrnn_optimizer,
                                    'min',
                                    factor=0.5,
                                    patience=5)
Exemple #18
0
	transforms.ToPILImage(),
	transforms.Resize((RED_SIZE, RED_SIZE)),
	# transforms.RandomHorizontalFlip(),
	transforms.ToTensor(),
])

transform_test = transforms.Compose([
	transforms.ToPILImage(),
	transforms.Resize((RED_SIZE, RED_SIZE)),
	transforms.ToTensor(),
])


trained=0
#model = VAE(3, LSIZE).to(device)
model=VAE(3, LSIZE)
model=torch.nn.DataParallel(model,device_ids=range(8))
model.cuda()
optimizer = optim.Adam(model.parameters(),lr=learning_rate,betas=(0.9,0.999))
model_p=VAE_a(7, LSIZE)
model_p=torch.nn.DataParallel(model_p,device_ids=range(8))
model_p.cuda()
optimizer_p = optim.Adam(model_p.parameters(),lr=learning_rate,betas=(0.9,0.999))
controller=Controller(LSIZE,3)
controller=torch.nn.DataParallel(controller,device_ids=range(8))
controller=controller.cuda()
optimizer_a = optim.SGD(controller.parameters(),lr=learning_rate*10)
# scheduler = ReduceLROnPlateau(optimizer, 'min', factor=0.5, patience=5)
# earlystopping = EarlyStopping('min', patience=30)

vis = visdom.Visdom(env='pa_train')
Exemple #19
0
def _train_vae(log_dir,
               offline_buffer_path,
               saved_tasks_path,
               env_type,
               seed,
               path_length,
               meta_episode_len,
               load_buffer_kwargs=None,
               **kwargs):
    with open(os.path.join(log_dir, 'test.txt'), 'w') as f:
        f.write("hello from train_vae_offline.py")
    if load_buffer_kwargs is None:
        load_buffer_kwargs = {}
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)

    parser = argparse.ArgumentParser()
    # parser.add_argument('--env-type', default='gridworld')
    # parser.add_argument('--env-type', default='point_robot_sparse')
    # parser.add_argument('--env-type', default='cheetah_vel')
    parser.add_argument('--env-type', default='ant_semicircle_sparse')
    extra_args = []
    for k, v in kwargs.items():
        extra_args.append('--{}'.format(k))
        extra_args.append(str(v))
    args, rest_args = parser.parse_known_args(args=extra_args)

    # --- GridWorld ---
    if env_type == 'cheetah_vel':
        args = args_cheetah_vel.get_args(rest_args)
        args.env_name = 'HalfCheetahVel-v0'
    elif env_type == 'ant_dir':
        # TODO: replace with ant_dir env
        args = args_ant_semicircle_sparse.get_args(rest_args)
        parser.add_argument('--env-name', default='AntSemiCircleSparse-v0')
        args.env_name = 'AntDir-v0'
    elif env_type == 'walker':
        args = args_walker_param.get_args(rest_args)
    elif env_type == 'hopper':
        args = args_hopper_param.get_args(rest_args)
    elif env_type == 'humanoid':
        args = args_humanoid_dir.get_args(rest_args)
    else:
        raise ValueError('Unknown env_type: {}'.format(env_type))

    set_gpu_mode(torch.cuda.is_available() and args.use_gpu)

    args, env = off_utl.expand_args(args)
    args.save_dir = os.path.join(log_dir, 'trained_vae')

    args.trajectory_len = path_length
    task_data = joblib.load(saved_tasks_path)
    tasks = task_data['tasks']
    print("loading dataset")
    with open(os.path.join(log_dir, 'tmp1.txt'), 'w') as f:
        f.write("train_vae_offline.py: start loading dataset")
    dataset, goals = off_utl.load_pearl_buffer(
        pretrain_buffer_path=offline_buffer_path,
        tasks=tasks,
        add_done_info=env.add_done_info,
        path_length=path_length,
        meta_episode_len=meta_episode_len,
        **load_buffer_kwargs)
    with open(os.path.join(log_dir, 'tmp1.txt'), 'a') as f:
        f.write("train_vae_offline.py: done loading dataset")
    print("done loading dataset")
    for data in dataset:
        print(data[0].shape)

    dataset = [[x.astype(np.float32) for x in d] for d in dataset]

    if args.save_model:
        dir_prefix = args.save_dir_prefix if hasattr(args, 'save_dir_prefix') \
                                             and args.save_dir_prefix is not None else ''
        args.full_save_path = os.path.join(
            args.save_dir, args.env_name,
            dir_prefix + datetime.datetime.now().strftime('__%d_%m_%H_%M_%S'))
        os.makedirs(args.full_save_path, exist_ok=True)
        config_utl.save_config_file(args, args.full_save_path)

    vae = VAE(args)
    train(vae, dataset, args)
Exemple #20
0
                                          transform_train,
                                          train=True)

dataset_test = RolloutObservationDataset('datasets/pacman',
                                         transform_test,
                                         train=False)
train_loader = torch.utils.data.DataLoader(dataset_train,
                                           batch_size=args.batch_size,
                                           shuffle=True,
                                           num_workers=2)
test_loader = torch.utils.data.DataLoader(dataset_test,
                                          batch_size=args.batch_size,
                                          shuffle=True,
                                          num_workers=2)

model = VAE(3, LSIZE).to(device)
optimizer = optim.Adam(model.parameters())
scheduler = ReduceLROnPlateau(optimizer, 'min', factor=0.5, patience=5)
earlystopping = EarlyStopping('min', patience=30)


# Reconstruction + KL divergence losses summed over all elements and batch
def loss_function(recon_x, x, mu, logsigma):
    """ VAE loss function """
    BCE = F.mse_loss(recon_x, x, size_average=False)

    # see Appendix B from VAE paper:
    # Kingma and Welling. Auto-Encoding Variational Bayes. ICLR, 2014
    # https://arxiv.org/abs/1312.6114
    # 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2)
    KLD = -0.5 * torch.sum(1 + 2 * logsigma - mu.pow(2) - (2 * logsigma).exp())
Exemple #21
0
def main(
    model_name,
    dataset,
    dataroot,
    download,
    augment,
    batch_size,
    eval_batch_size,
    epochs,
    saved_model,
    seed,
    hidden_channels,
    K,
    L,
    actnorm_scale,
    flow_permutation,
    flow_coupling,
    LU_decomposed,
    learn_top,
    y_condition,
    y_weight,
    max_grad_clip,
    max_grad_norm,
    lr,
    n_workers,
    cuda,
    n_init_batches,
    output_dir,
    saved_optimizer,
    warmup,
):

    vis = visdom.Visdom()
    env = "{}_{}".format(model_name, dataset)

    device = "cpu" if (not torch.cuda.is_available() or not cuda) else "cuda:0"

    check_manual_seed(seed)

    ds = check_dataset(dataset, dataroot, augment, download)
    image_shape, num_classes, train_dataset, test_dataset = ds

    # Note: unsupported for now
    multi_class = False

    train_loader = data.DataLoader(
        train_dataset,
        batch_size=batch_size,
        shuffle=True,
        num_workers=n_workers,
        drop_last=True,
    )
    test_loader = data.DataLoader(
        test_dataset,
        batch_size=eval_batch_size,
        shuffle=False,
        num_workers=n_workers,
        drop_last=False,
    )

    if model_name == "Glow":
        model = Glow(
            image_shape,
            hidden_channels,
            K,
            L,
            actnorm_scale,
            flow_permutation,
            flow_coupling,
            LU_decomposed,
            num_classes,
            learn_top,
            y_condition,
        )
    elif model_name == "VAE":
        model = VAE(
            image_shape,
            hidden_channels,
        )

    model = model.to(device)
    optimizer = optim.Adam(model.parameters(), lr=lr, weight_decay=5e-5)

    lr_lambda = lambda epoch: min(1.0, (epoch + 1) / warmup)  # noqa
    scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer,
                                                  lr_lambda=lr_lambda)

    train_loss_window = create_plot_window(vis, env, '#Iterations', 'Loss',
                                           'Training Loss')
    val_avg_loss_window = create_plot_window(vis, env, '#Epochs', 'Loss',
                                             'Validation Average Loss')
    train_image_window = create_image_window(vis, env, 'Training Images')

    def step(engine, batch):
        model.train()
        optimizer.zero_grad()

        x, y = batch
        x = x.to(device)

        if y_condition:
            y = y.to(device)
            z, nll, y_logits = model(x, y)
            losses = compute_loss_y(nll, y_logits, y_weight, y, multi_class)
        else:
            z, nll, y_logits, im = model(x)
            losses = compute_loss(nll)
        if engine.state.iteration % 250 == 1:
            vis.line(X=np.array([engine.state.iteration]),
                     Y=np.array([losses["total_loss"].item()]),
                     win=train_loss_window,
                     update='append',
                     env=env)
            vis.images(postprocess(im),
                       nrow=16,
                       win=train_image_window,
                       env=env)

        losses["total_loss"].backward()

        if max_grad_clip > 0:
            torch.nn.utils.clip_grad_value_(model.parameters(), max_grad_clip)
        if max_grad_norm > 0:
            torch.nn.utils.clip_grad_norm_(model.parameters(), max_grad_norm)

        optimizer.step()

        return losses

    def eval_step(engine, batch):
        model.eval()

        x, y = batch
        x = x.to(device)

        with torch.no_grad():
            if y_condition:
                y = y.to(device)
                z, nll, y_logits = model(x, y)
                losses = compute_loss_y(nll,
                                        y_logits,
                                        y_weight,
                                        y,
                                        multi_class,
                                        reduction="none")
            else:
                z, nll, y_logits, im = model(x)
                losses = compute_loss(nll, reduction="none")

        return losses

    trainer = Engine(step)
    checkpoint_handler = ModelCheckpoint(output_dir,
                                         model_name,
                                         save_interval=1,
                                         n_saved=5,
                                         require_empty=False)

    trainer.add_event_handler(
        Events.EPOCH_COMPLETED,
        checkpoint_handler,
        {
            "model": model,
            "optimizer": optimizer
        },
    )

    monitoring_metrics = ["total_loss"]
    RunningAverage(output_transform=lambda x: x["total_loss"]).attach(
        trainer, "total_loss")

    evaluator = Engine(eval_step)

    # Note: replace by https://github.com/pytorch/ignite/pull/524 when released
    Loss(
        lambda x, y: torch.mean(x),
        output_transform=lambda x: (
            x["total_loss"],
            torch.empty(x["total_loss"].shape[0]),
        ),
    ).attach(evaluator, "total_loss")

    if y_condition:
        monitoring_metrics.extend(["nll"])
        RunningAverage(output_transform=lambda x: x["nll"]).attach(
            trainer, "nll")

        # Note: replace by https://github.com/pytorch/ignite/pull/524 when released
        Loss(
            lambda x, y: torch.mean(x),
            output_transform=lambda x:
            (x["nll"], torch.empty(x["nll"].shape[0])),
        ).attach(evaluator, "nll")

    pbar = ProgressBar()
    pbar.attach(trainer, metric_names=monitoring_metrics)

    # load pre-trained model if given
    if saved_model:
        model.load_state_dict(torch.load(saved_model))
        model.set_actnorm_init()

        if saved_optimizer:
            optimizer.load_state_dict(torch.load(saved_optimizer))

        file_name, ext = os.path.splitext(saved_model)
        resume_epoch = int(file_name.split("_")[-1])

        @trainer.on(Events.STARTED)
        def resume_training(engine):
            engine.state.epoch = resume_epoch
            engine.state.iteration = resume_epoch * len(
                engine.state.dataloader)

    @trainer.on(Events.STARTED)
    def init(engine):
        model.train()

        init_batches = []
        init_targets = []

        with torch.no_grad():
            for batch, target in islice(train_loader, None, n_init_batches):
                init_batches.append(batch)
                init_targets.append(target)

            init_batches = torch.cat(init_batches).to(device)

            assert init_batches.shape[0] == n_init_batches * batch_size

            if y_condition:
                init_targets = torch.cat(init_targets).to(device)
                model(init_batches, init_targets)
            else:
                init_targets = None
                model(init_batches)

    @trainer.on(Events.EPOCH_COMPLETED)
    def evaluate(engine):
        evaluator.run(test_loader)

        scheduler.step()
        metrics = evaluator.state.metrics

        losses = ", ".join(
            [f"{key}: {value:.2f}" for key, value in metrics.items()])
        vis.line(X=np.array([engine.state.epoch]),
                 Y=np.array([metrics["total_loss"]]),
                 win=val_avg_loss_window,
                 update='append',
                 env=env)
        print(f"Validation Results - Epoch: {engine.state.epoch} {losses}")

    timer = Timer(average=True)
    timer.attach(
        trainer,
        start=Events.EPOCH_STARTED,
        resume=Events.ITERATION_STARTED,
        pause=Events.ITERATION_COMPLETED,
        step=Events.ITERATION_COMPLETED,
    )

    @trainer.on(Events.EPOCH_COMPLETED)
    def print_times(engine):
        pbar.log_message(
            f"Epoch {engine.state.epoch} done. Time per batch: {timer.value():.3f}[s]"
        )
        timer.reset()

    trainer.run(train_loader, epochs)
Exemple #22
0
 def load_vae(self):
     self.vae = VAE(self.args)
     vae_models_path = os.path.join(self.args.vae_dir, self.args.env_name,
                                    self.args.vae_model_name, 'models')
     off_utl.load_trained_vae(self.vae, vae_models_path)
Exemple #23
0
import util.torchaudio_transforms as transforms
from experiment_builders.vae_builder import VAEWORLDExperimentBuilder
from experiment_builders.vae_builder import VAERawExperimentBuilder
from models.vae import VAE
from models.common_networks import QuantisedInputModuleWrapper
from datasets.vcc_world_dataset import VCCWORLDDataset
from datasets.vcc_raw_dataset import VCCRawDataset
from datasets.vctk_dataset import VCTKDataset
from util.samplers import ChunkEfficientRandomSampler

torch.manual_seed(seed=args.seed)

vae_model = VAE(input_shape=(1, 1, args.input_len),
                encoder_arch=args.encoder,
                generator_arch=args.generator,
                latent_dim=args.latent_dim,
                num_speakers=args.num_speakers,
                speaker_dim=args.speaker_dim,
                use_gated_convolutions=args.use_gated_convolutions)

if args.dataset == 'VCCWORLD2016':
    print('VCC2016 dataset WORLD features.')

    dataset_path = args.dataset_root_path
    train_dataset = VCCWORLDDataset(root=dataset_path, scale=True)
    val_dataset = VCCWORLDDataset(root=dataset_path, scale=True, eval=True)

    # Create data loaders
    train_data = torch.utils.data.DataLoader(
        train_dataset,
        batch_size=args.batch_size,
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# constants
BSIZE = 16
SEQ_LEN = 32
epochs = 30

# Loading VAE

vae_file = join(args.logdir, 'vae', 'best.tar')
assert exists(vae_file), "No trained VAE in the logdir..."
state = torch.load(vae_file)
print("Loading VAE at epoch {} "
      "with test error {}".format(state['epoch'], state['precision']))

vae = VAE(7, LSIZE).to(device)
vae.load_state_dict(state['state_dict'])

# Loading model
rnn_dir = join(args.logdir, 'mdrnn')
rnn_file = join(rnn_dir, 'best.tar')

if not exists(rnn_dir):
    mkdir(rnn_dir)

mdrnn = MDRNN(LSIZE, 1, RSIZE, 5)
mdrnn.to(device)
optimizer = torch.optim.RMSprop(mdrnn.parameters(), lr=1e-3, alpha=.9)
scheduler = ReduceLROnPlateau(optimizer, 'min', factor=0.5, patience=5)
earlystopping = EarlyStopping('min', patience=30)
def run_vae():
    seed = np.random.randint(1, 2147462579)

    def sinus_seq(period, samples, length):
        X = np.linspace(-np.pi * (samples / period),
                        np.pi * (samples / period), samples)
        X = np.reshape(np.sin(X), (-1, length))
        X += np.random.randn(*X.shape) * 0.1
        # X = (X - np.min(X))/(np.max(X) - np.min(X))
        return X, np.ones((samples / length, 1))

    X1, y1 = sinus_seq(40, 100000, 50)
    X2, y2 = sinus_seq(20, 40000, 50)

    X = np.concatenate((X1, X2)).astype('float32')
    y = np.concatenate((y1 * 0, y2 * 1), axis=0).astype('int')

    dim_samples, dim_features = X.shape
    X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.8)

    # X, y, users, stats = har.load()
    #
    # limited_labels = y < 5
    # y = y[limited_labels]
    # X = X[limited_labels]
    # users = users[limited_labels]
    #
    # # Compress labels
    # for idx, label in enumerate(np.unique(y)):
    #     if not np.equal(idx, label):
    #         y[y == label] = idx
    #
    # y_unique = np.unique(y)
    # y = one_hot(y, len(y_unique))
    #
    # dim_samples, dim_sequence, dim_features = X.shape
    # num_classes = len(y_unique)
    #
    # # Split into train and test stratified by users
    # X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, stratify=users)

    # Combine in sets
    train_set = (X_train, y_train)
    test_set = (X_test, y_test)
    print('Train size: ', train_set[0].shape)
    print('Test size: ', test_set[0].shape)

    n, n_x = train_set[0].shape  # Datapoints in the dataset, input features.
    n_batches = n / 100  # The number of batches.
    bs = n / n_batches  # The batchsize.

    # Initialize the auxiliary deep generative model.
    model = VAE(n_x=int(n_x),
                n_z=16,
                z_hidden=[16],
                xhat_hidden=[32],
                x_dist='gaussian')

    # Get the training functions.
    f_train, f_test, f_validate, train_args, test_args, validate_args = model.build_model(
        train_set, test_set)
    # Update the default function arguments.
    train_args['inputs']['batchsize'] = 100
    train_args['inputs']['learningrate'] = 1e-3
    train_args['inputs']['beta1'] = 0.9
    train_args['inputs']['beta2'] = 0.999

    def custom_evaluation(model, path):
        plt.clf()
        f, axarr = plt.subplots(nrows=len(np.unique(y)), ncols=1)
        for idx, y_l in enumerate(np.unique(y)):
            act_idx = test_set[1] == y_l
            test_act = test_set[0][act_idx[:, 0]]

            z = model.f_qz(test_act, 1)
            xhat = model.f_px(z, 1)

            axarr[idx].plot(test_act[:3].reshape(-1, 1), color='red')
            axarr[idx].plot(xhat[:3].reshape(-1, 1),
                            color='blue',
                            linestyle='dotted')

        f.set_size_inches(8, 5)
        f.savefig(path, dpi=100, format='png')
        plt.close(f)

    # Define training loop. Output training evaluations every 1 epoch
    # and the custom evaluation method every 10 epochs.
    train = TrainModel(model=model,
                       output_freq=1,
                       pickle_f_custom_freq=100,
                       f_custom_eval=custom_evaluation)
    train.add_initial_training_notes("Training the rae with bn %s. seed %i." %
                                     (str(model.batchnorm), seed))
    train.train_model(f_train,
                      train_args,
                      f_test,
                      test_args,
                      f_validate,
                      validate_args,
                      n_train_batches=n_batches,
                      n_epochs=10000,
                      anneal=[("learningrate", 100, 0.75, 3e-5)])
  print("high, low", env.action_space.high, env.action_space.low)
  print("environment details")
  print("env.observation_space", env.observation_space)
  print("high, low", env.observation_space.high, env.observation_space.low)
  assert False
  '''
  return env
transform = transforms.Compose([
  transforms.ToPILImage(),
  transforms.Resize((64, 64)),
  # transforms.RandomHorizontalFlip(),
  transforms.ToTensor(),
])
# from https://github.com/openai/gym/blob/master/gym/envs/box2d/car_racing.py
if __name__=="__main__":
  model=VAE(3, 64)
  model=torch.nn.DataParallel(model,device_ids=range(1))
  model.cuda()
  controller=Controller_class(64,3)
  controller=torch.nn.DataParallel(controller,device_ids=range(1))
  controller=controller.cuda()
  state = torch.load('/home/ld/gym-car/log/class/contorl_checkpoint_10.pkl')
  controller.load_state_dict(state['state_dict'])
  print('contorller load success')
  state = torch.load('/home/ld/gym-car/log/class/vae_checkpoint_10.pkl')
  model.load_state_dict(state['state_dict'])
  print('vae load success')
  # from pyglet.window import key
  action = np.array( [0.0, 0.0, 0.0] )
  # def key_press(k, mod):
  #   global restart
Exemple #27
0
def _borel(
        log_dir,
        pretrained_vae_dir,
        env_type,
        transform_data_bamdp,
        seed,
        path_length,
        meta_episode_len,
        relabelled_data_dir=None,
        offline_buffer_path_to_save_to=None,
        offline_buffer_path='',
        saved_tasks_path='',
        debug=False,
        vae_model_name=None,
        load_buffer_kwargs=None,
        gpu_id=0,
        **kwargs,
):
    if load_buffer_kwargs is None:
        load_buffer_kwargs = {}
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    parser = argparse.ArgumentParser()
    torch.autograd.set_detect_anomaly(True)

    if offline_buffer_path_to_save_to is None:
        offline_buffer_path_to_save_to = os.path.join(log_dir, 'transformed_data')

    # parser.add_argument('--env-type', default='gridworld')
    # parser.add_argument('--env-type', default='point_robot_sparse')
    # parser.add_argument('--env-type', default='cheetah_vel')
    parser.add_argument('--env-type', default=env_type)
    extra_args = []
    for k, v in kwargs.items():
        extra_args.append('--{}'.format(k))
        extra_args.append(str(v))
    args, rest_args = parser.parse_known_args(args=extra_args)
    args = env_name_to_args[env_type].get_args(rest_args)
    set_gpu_mode(torch.cuda.is_available() and args.use_gpu, gpu_id=gpu_id)

    if vae_model_name is None:
        vae_model_name = os.listdir(
            os.path.join(pretrained_vae_dir, args.env_name)
        )[0]

    vae_args = config_utl.load_config_file(os.path.join(pretrained_vae_dir, args.env_name,
                                                        vae_model_name, 'online_config.json'))
    args = config_utl.merge_configs(vae_args, args)     # order of input to this function is important
    # _, env = off_utl.expand_args(args)
    from environments.make_env import make_env
    task_data = joblib.load(saved_tasks_path)
    tasks = task_data['tasks']
    args.presampled_tasks = tasks
    env = make_env(args.env_name,
                   args.max_rollouts_per_task,
                   presampled_tasks=tasks,
                   seed=args.seed)#,
                   # n_tasks=1)

    args.vae_dir = pretrained_vae_dir
    args.data_dir = None
    args.vae_model_name = vae_model_name
    if transform_data_bamdp:
        # Transform data BAMDP (state relabelling)
        # load VAE for state relabelling
        print("performing state-relabeling")
        vae_models_path = os.path.join(pretrained_vae_dir, args.env_name,
                                       vae_model_name, 'models')
        vae = VAE(args)
        off_utl.load_trained_vae(vae, vae_models_path)
        # load data and relabel
        os.makedirs(offline_buffer_path_to_save_to, exist_ok=True)
        dataset, goals = off_utl.load_pearl_buffer(
            offline_buffer_path,
            tasks,
            add_done_info=env.add_done_info,
            path_length=path_length,
            meta_episode_len=meta_episode_len,
            **load_buffer_kwargs
        )
        dataset = [[x.astype(np.float32) for x in d] for d in dataset]
        bamdp_dataset = off_utl.transform_mdps_ds_to_bamdp_ds(dataset, vae, args)
        # save relabelled data
        print("saving state-relabeled data to ", offline_buffer_path_to_save_to)
        off_utl.save_dataset(offline_buffer_path_to_save_to, bamdp_dataset, goals)
        relabelled_data_dir = offline_buffer_path_to_save_to
    args.relabelled_data_dir = relabelled_data_dir
    args.max_rollouts_per_task = 3
    args.results_log_dir = log_dir

    if debug:
        print("DEBUG MODE ON")
        args.rl_updates_per_iter = 1
        args.log_interval = 1
    learner = OfflineMetaLearner(args)

    learner.train()
Exemple #28
0
hmap['seed'] = 1
hmap['dim_observations'] = sparse_array.shape[1]
hmap['init_scheme'] = 'uniform'
hmap['init_weight'] = .1
hmap['data_type'] = 'binary'

#latent dim
hmap['dim_stochastic'] = 100

#train
pfile = '/data/ml2/vishakh/vae_out/pfile.pkl'
print 'Training model from scratch. Parameters in: ', pfile

hmap['dim_stochastic'] = 100

vae = VAE(hmap, paramFile=pfile)

vae.learn(sparse_array,
          epoch_start=0,
          epoch_end=hmap['epochs'],
          batch_size=hmap['batch_size'],
          savefreq=50,
          savefile='/data/ml2/vishakh/vae_out',
          dataset_eval=sparse_array,
          replicate_K=5)

#Save the latent space info
print "getting latent space"
latent_space = vae.infer(sparse_array)

latent_space = np.array(latent_space)
parser = argparse.ArgumentParser(description='Dataset examination')
parser.add_argument('--datasets',
                    type=str,
                    default='datasets',
                    help='Where the datasets are stored')
parser.add_argument('--vae', type=str, help='VAE checkpoint')
parser.add_argument('--vae_two', type=str, help='VAE 2 checkpoint')
parser.add_argument('--example_num', type=int)

args = parser.parse_args()

assert exists(args.vae), "No trained VAE in the originallogdir..."
state = torch.load(args.vae, map_location={'cuda:0': str(device)})
print("Loading VAE at epoch {} "
      "with test error {}".format(state['epoch'], state['precision']))
vae = VAE(3, LSIZE).to(device)
vae.load_state_dict(state['state_dict'])

assert exists(args.vae_two), "No trained VAE in the originallogdir..."
state = torch.load(args.vae_two, map_location={'cuda:0': str(device)})
print("Loading VAE two at epoch {} "
      "with test error {}".format(state['epoch'], state['precision']))
vae_two = VAE(3, LSIZE).to(device)
vae_two.load_state_dict(state['state_dict'])


def transform(x):
    return torch.Tensor(
        np.expand_dims(np.transpose(x, (2, 0, 1)) / 255, axis=0))

Exemple #30
0
    train_loader = torch.utils.data.DataLoader(datasets.MNIST(
        '../data', train=True, download=True, transform=transforms.ToTensor()),
                                               batch_size=args.batch_size,
                                               shuffle=True,
                                               **kwargs)
    test_loader = torch.utils.data.DataLoader(datasets.MNIST(
        '../data', train=False, transform=transforms.ToTensor()),
                                              batch_size=args.batch_size,
                                              shuffle=True,
                                              **kwargs)

    in_channel = 1
    in_height = in_width = 28
    model = VAE(height=in_height,
                width=in_width,
                in_channel=in_channel,
                z_dim=args.z_dim,
                k=args.train_k).to(device)
    optimizer = optim.Adam(model.parameters(), lr=args.lr)


def train_iwae(epoch):
    model.train()
    train_loss = 0
    for batch_idx, (data, _) in enumerate(train_loader):
        data = data.to(device)

        optimizer.zero_grad()
        x_prime, z, mu, logvar = model(data)
        loss = model.neg_elbo_iwae(data,
                                   x_prime,