Exemple #1
0
def LoadPredictionModels(in_model_weights_names, net_settings, cuda_device_id):
    nets = []
    for weights_filename in in_model_weights_names:
        # TODO Also load bias post transform modules.
        net = models.MakeNetwork(in_shape=[
            net_settings[training_helpers.IN_CHANNELS],
            net_settings[training_helpers.TARGET_HEIGHT],
            net_settings[training_helpers.TARGET_WIDTH]
        ],
                                 options=net_settings,
                                 post_transform_modules=[])
        net.load_state_dict(torch.load(weights_filename), strict=False)
        net.cuda(cuda_device_id)
        net.eval()
        nets.append(net)
    return nets
    # Crop settings
    parser.add_argument('--crop_top', type=int, default=0)
    parser.add_argument('--crop_bottom', type=int, default=0)
    parser.add_argument('--crop_left', type=int, default=0)
    parser.add_argument('--crop_right', type=int, default=0)

    # Post-crop resize settings.
    parser.add_argument('--target_height', type=int, default=-1)
    parser.add_argument('--target_width', type=int, default=-1)

    args = parser.parse_args()

    # Init model and load weights.
    net = models.MakeNetwork(
        args.net_name,
        in_shape=[3, args.target_height, args.target_width],
        out_dims=args.net_out_total_dimensions,
        dropout_prob=0.0)
    net.load_state_dict(torch.load(args.in_model_weights))
    net.eval()
    net.cuda()

    result_data = []
    frames_generator = image_helpers.VideoFrameGenerator(args.in_video)
    for raw_frame, frame_index in frames_generator:
        frame_cropped = image_helpers.CropHWC(raw_frame, args.crop_top,
                                              args.crop_bottom, args.crop_left,
                                              args.crop_right)
        frame_resized = image_helpers.MaybeResizeHWC(frame_cropped,
                                                     args.target_height,
                                                     args.target_width)
Exemple #3
0
def MakeTrainer(train_data,
                val_data,
                all_settings,
                num_nets_to_train,
                epochs,
                cuda_device_id=0,
                preload_weight_names=None):
    learners = []
    for net_idx in range(num_nets_to_train):
        net = models.MakeNetwork(all_settings[NET_NAME],
                                 in_shape=[
                                     all_settings[IN_CHANNELS],
                                     all_settings[TARGET_HEIGHT],
                                     all_settings[TARGET_WIDTH]
                                 ],
                                 head_dims=all_settings[NET_HEAD_DIMS],
                                 out_dims=all_settings[LABEL_DIMENSIONS],
                                 dropout_prob=all_settings[DROPOUT_PROB],
                                 options=all_settings[NET_OPTIONS])
        assert net.InputNames() == all_settings[INPUT_NAMES]
        assert net.LabelNames() == all_settings[LABEL_NAMES]

        if preload_weight_names is not None:
            assert len(preload_weight_names) == num_nets_to_train
            net.load_state_dict(torch.load(preload_weight_names[net_idx]))

        net.cuda(cuda_device_id)

        optimizer = MakeOptimizer(net, all_settings[OPTIMIZER],
                                  all_settings[LEARNING_RATE])
        lr_scheduler = None
        if all_settings[PLATEAU_PATIENCE_EPOCHS] > 0:
            lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
                optimizer,
                factor=0.5,
                patience=all_settings[PLATEAU_PATIENCE_EPOCHS])
        learners.append(optimize.Learner(net, optimizer, lr_scheduler))

    train_settings = optimize.TrainSettings(
        optimize.SingleLabelLoss(
            optimize.PowerLoss(all_settings[LOSS_NORM_POW])), epochs)

    data_element_names = all_settings[INPUT_NAMES] + all_settings[LABEL_NAMES]
    image_element_idx = data_element_names.index(models.FRAME_IMG)
    steering_element_idx = data_element_names.index(models.STEERING)

    random_shift_directions = None
    if all_settings[DO_PCA_RANDOM_SHIFTS]:
        random_shift_directions = image_helpers.GetPcaRgbDirections(
            train_data[image_element_idx].astype(np.float32) / 255.0)

    horizontal_label_shift_rate = np.array(
        all_settings[HORIZONTAL_LABEL_SHIFT_RATE], dtype=np.float32)

    augment_settings = augmentation.AugmentSettings(
        target_width=all_settings[TARGET_WIDTH],
        max_horizontal_shift_pixels=all_settings[MAX_HORIZONTAL_SHIFT_PIXELS],
        horizontal_label_shift_rate=horizontal_label_shift_rate,
        blur_sigma=all_settings[TRAIN_BLUR_SIGMA],
        blur_prob=all_settings[TRAIN_BLUR_PROB],
        grayscale_interpolate_prob=all_settings[GRAYSCALE_INTERPOLATE_PROB],
        random_shift_directions=random_shift_directions)

    train_loader, val_loader = MakeDataLoaders(
        train_data, val_data, image_element_idx, steering_element_idx,
        all_settings[TARGET_WIDTH], augment_settings, all_settings[BATCH_SIZE])

    return learners, train_loader, val_loader, train_settings
Exemple #4
0
    # at gradient wrt the first frame, so set all the other gradients to zero.
    output_gradient = np.zeros(
        [args.batch_size, net_settings[training_helpers.LABEL_DIMENSIONS]],
        dtype=np.float32)
    output_gradient[:, 0] = 1.0
    output_gradient_tensor = Variable(torch.from_numpy(output_gradient)).cuda(
        args.cuda_device_id)

    # Load the model and transfer to GPU.
    # TODO factor out from here and predict_video.py
    net = models.MakeNetwork(
        net_settings[training_helpers.NET_NAME],
        in_shape=[
            net_settings[training_helpers.IN_CHANNELS],
            net_settings[training_helpers.TARGET_HEIGHT],
            net_settings[training_helpers.TARGET_WIDTH]
        ],
        head_dims=net_settings[training_helpers.NET_HEAD_DIMS],
        out_dims=net_settings[training_helpers.LABEL_DIMENSIONS],
        dropout_prob=net_settings[training_helpers.DROPOUT_PROB],
        options=net_settings[training_helpers.NET_OPTIONS])
    net.load_state_dict(torch.load(args.in_model_weights))
    net.cuda(args.cuda_device_id)
    net.eval()

    out_video = skvideo.io.FFmpegWriter(args.out_video,
                                        inputdict={'-r': '30.0'},
                                        outputdict={
                                            '-r': '30.0',
                                            '-crf': '17',
                                            '-preset': 'slow'
Exemple #5
0
        label_suffix=args.labels_file_suffix)
    random_shift_directions = None if not args.do_pca_random_shifts else (
        image_helpers.GetPcaRgbDirections(
            train_data.astype(np.float32) / 255.0))
    augment_settings = augmentation.AugmentSettings(
        target_width=args.target_width,
        max_horizontal_shift_pixels=args.max_horizontal_shift_pixels,
        horizontal_label_shift_rate=args.horizontal_label_shift_rate,
        blur_sigma=args.train_blur_sigma,
        blur_prob=args.train_blur_prob,
        grayscale_interpolate_prob=args.grayscale_interpolate_prob,
        random_shift_directions=random_shift_directions)

    train_loader, val_loader = training_helpers.MakeDataLoaders(
        train_data, train_labels, val_data, val_labels, args.target_width,
        augment_settings, args.batch_size,
        args.example_label_extra_weight_scale)

    net = models.MakeNetwork(
        args.net_name,
        in_shape=[3, args.target_height, args.target_width],
        dropout_prob=args.dropout_prob)
    net.cuda()

    train_settings = optimize.TrainSettings(
        optimize.LossSettings(optimize.WeightedMSELoss()),
        torch.optim.Adam(net.parameters()), args.epochs)

    optimize.TrainModel(net, train_loader, val_loader, train_settings,
                        args.out_prefix)
Exemple #6
0
    # Gradients wrt output label to be used for backpropagation. We will only look
    # at gradient wrt the first frame, so set all the other gradients to zero.
    output_gradient = np.zeros(
        [args.batch_size, net_settings[training_helpers.LABEL_DIMENSIONS]],
        dtype=np.float32)
    output_gradient[:, 0] = 1.0
    output_gradient_tensor = Variable(torch.from_numpy(output_gradient)).cuda(
        args.cuda_device_id)

    # Load the model and transfer to GPU.
    # TODO factor out from here and predict_video.py
    net = models.MakeNetwork(
        net_settings[training_helpers.NET_NAME],
        in_shape=[
            net_settings[training_helpers.IN_CHANNELS],
            net_settings[training_helpers.TARGET_HEIGHT],
            net_settings[training_helpers.TARGET_WIDTH]
        ],
        out_dims=net_settings[training_helpers.LABEL_DIMENSIONS],
        options=net_settings[training_helpers.NET_OPTIONS])
    net.load_state_dict(torch.load(args.in_model_weights))
    net.cuda(args.cuda_device_id)
    net.eval()

    out_video = skvideo.io.FFmpegWriter(args.out_video,
                                        inputdict={'-r': '30.0'},
                                        outputdict={
                                            '-r': '30.0',
                                            '-crf': '17',
                                            '-preset': 'slow'
                                        })