Exemple #1
0
def main():
    args = parser.parse_args()
    print('->model load: {}'.format(args.pretrained_posenet))
    weights_pose = torch.load(args.pretrained_posenet)
    pose_net = models.PoseNet().to(device)
    pose_net.load_state_dict(weights_pose['state_dict'], strict=False)
    pose_net.eval()
    if args.type =='gray':
        image_dir = Path(args.dataset_dir + args.sequence + "/image_1/")#gray 01, color 23
    else:
        image_dir = Path(args.dataset_dir + args.sequence + "/image_2/")#gray 01, color 23

    output_dir = Path(args.output_dir)
    print('-> out dif {}'.format(output_dir))
    output_dir.makedirs_p()

    test_files = sum([image_dir.files('*.{}'.format(ext))
                      for ext in args.img_exts], [])
    test_files.sort()
    print('{} files to test'.format(len(test_files)))

    global_pose = np.identity(4)
    poses = [global_pose[0:3, :].reshape(1, 12)]

    n = len(test_files)
    tensor_img1 = load_tensor_image(test_files[0], args)

    for iter in tqdm(range(n - 1)):
        tensor_img2 = load_tensor_image(test_files[iter+1], args)
        pose = pose_net(tensor_img1, tensor_img2)
        pose_mat = pose_vec2mat(pose).squeeze(0).cpu().numpy()#1,6-->3x4


        pose_mat = np.vstack([pose_mat, np.array([0, 0, 0, 1])])#4X4
        global_pose = global_pose @ np.linalg.inv(pose_mat)

        pose = global_pose[0:3, :].reshape(1, 12)


        poses.append(pose)

        # update
        tensor_img1 = tensor_img2

    poses = np.concatenate(poses, axis=0)
    if args.scale_factor:
            poses[:,3]*=args.scale_factor#x-axis
            poses[:,11]*=args.scale_factor#z-axis
    filename = Path(args.output_dir + args.sequence + ".txt")
    np.savetxt(filename, poses, delimiter=' ', fmt='%1.8e')
def main():
    args = parser.parse_args()

    weights_pose = torch.load(args.pretrained_posenet)
    pose_net = models.PoseNet().to(device)
    pose_net.load_state_dict(weights_pose['state_dict'], strict=False)
    pose_net.eval()

    sequences = os.listdir(args.dataset_dir)

    for seq in sequences:
        if '.txt' not in seq:
            args.sequence = seq
            image_dir = Path(args.dataset_dir + args.sequence + "/")
            output_dir = Path(args.output_dir)
            output_dir.makedirs_p()

            test_files = sum(
                [image_dir.files('*.{}'.format(ext)) for ext in args.img_exts],
                [])
            test_files.sort()
            print('{} files to test'.format(len(test_files)))

            global_pose = np.identity(4)
            poses = [global_pose[0:3, :].reshape(1, 12)]

            n = len(test_files)
            tensor_img1 = load_tensor_image(test_files[0], args)

            for iter in tqdm(range(n - 1)):
                tensor_img2 = load_tensor_image(test_files[iter + 1], args)
                pose = pose_net(tensor_img1, tensor_img2)
                pose_mat = pose_vec2mat(pose).squeeze(0).cpu().numpy()
                pose_mat = np.vstack([pose_mat, np.array([0, 0, 0, 1])])
                global_pose = global_pose @ np.linalg.inv(pose_mat)

                poses.append(global_pose[0:3, :].reshape(1, 12))

                # update
                tensor_img1 = tensor_img2

            poses = np.concatenate(poses, axis=0)
            filename = Path(args.output_dir + args.sequence + ".txt")
            np.savetxt(filename, poses, delimiter=' ', fmt='%1.8e')
Exemple #3
0
def main():
    args = parser.parse_args()

    weights = torch.load(args.pretrained_posenet)
    pose_net = models.PoseNet().to(device)
    pose_net.load_state_dict(weights['state_dict'], strict=False)
    pose_net.eval()

    seq_length = 5
    dataset_dir = Path(args.dataset_dir)
    framework = test_framework(dataset_dir, args.sequences, seq_length)
    print('{} snippets to test'.format(len(framework)))

    errors = np.zeros((len(framework), 2), np.float32)
    if args.output_dir is not None:
        output_dir = Path(args.output_dir)
        output_dir.makedirs_p()
        predictions_array = np.zeros((len(framework), seq_length, 3, 4))

    for j, sample in enumerate(tqdm(framework)):
        imgs = sample['imgs']

        h, w, _ = imgs[0].shape
        if (not args.no_resize) and (h != args.img_height
                                     or w != args.img_width):
            imgs = [
                imresize(img,
                         (args.img_height, args.img_width)).astype(np.float32)
                for img in imgs
            ]

        imgs = [np.transpose(img, (2, 0, 1)) for img in imgs]

        tensor_imgs = []
        for i, img in enumerate(imgs):
            img = ((torch.from_numpy(img).unsqueeze(0) / 255 - 0.5) /
                   0.5).to(device)
            tensor_imgs.append(img)

        global_pose = np.identity(4)
        poses = []
        poses.append(global_pose[0:3, :])

        for iter in range(seq_length - 1):
            pose = pose_net(tensor_imgs[iter], tensor_imgs[iter + 1])
            pose_mat = pose_vec2mat(pose).squeeze(0).cpu().numpy()
            pose_mat = np.vstack([pose_mat, np.array([0, 0, 0, 1])])

            global_pose = global_pose @ np.linalg.inv(pose_mat)
            poses.append(global_pose[0:3, :])

        final_poses = np.stack(poses, axis=0)

        if args.output_dir is not None:
            predictions_array[j] = final_poses

        ATE, RE = compute_pose_error(sample['poses'], final_poses)
        errors[j] = ATE, RE

    mean_errors = errors.mean(0)
    std_errors = errors.std(0)
    error_names = ['ATE', 'RE']
    print('')
    print("Results")
    print("\t {:>10}, {:>10}".format(*error_names))
    print("mean \t {:10.4f}, {:10.4f}".format(*mean_errors))
    print("std \t {:10.4f}, {:10.4f}".format(*std_errors))

    if args.output_dir is not None:
        np.save(output_dir / 'predictions.npy', predictions_array)
Exemple #4
0
def prepare_environment():
    env = {}
    args = parser.parse_args()
    if args.dataset_format == 'KITTI':
        from datasets.shifted_sequence_folders import ShiftedSequenceFolder
    elif args.dataset_format == 'StillBox':
        from datasets.shifted_sequence_folders import StillBox as ShiftedSequenceFolder
    elif args.dataset_format == 'TUM':
        from datasets.shifted_sequence_folders import TUM as ShiftedSequenceFolder
    save_path = save_path_formatter(args, parser)
    args.save_path = 'checkpoints' / save_path
    print('=> will save everything to {}'.format(args.save_path))
    args.save_path.makedirs_p()
    torch.manual_seed(args.seed)

    args.test_batch_size = 4 * args.batch_size
    if args.evaluate:
        args.epochs = 0

    env['training_writer'] = SummaryWriter(args.save_path)
    output_writers = []
    if args.log_output:
        for i in range(3):
            output_writers.append(
                SummaryWriter(args.save_path / 'valid' / str(i)))
    env['output_writers'] = output_writers

    # Data loading code
    normalize = custom_transforms.Normalize(mean=[0.5, 0.5, 0.5],
                                            std=[0.5, 0.5, 0.5])
    train_transform = custom_transforms.Compose([
        # custom_transforms.RandomHorizontalFlip(),
        custom_transforms.ArrayToTensor(),
        normalize
    ])

    valid_transform = custom_transforms.Compose(
        [custom_transforms.ArrayToTensor(), normalize])

    print("=> fetching scenes in '{}'".format(args.data))
    train_set = ShiftedSequenceFolder(args.data,
                                      transform=train_transform,
                                      seed=args.seed,
                                      train=True,
                                      with_depth_gt=False,
                                      with_pose_gt=args.supervise_pose,
                                      sequence_length=args.sequence_length)
    val_set = ShiftedSequenceFolder(args.data,
                                    transform=valid_transform,
                                    seed=args.seed,
                                    train=False,
                                    sequence_length=args.sequence_length,
                                    with_depth_gt=args.with_gt,
                                    with_pose_gt=args.with_gt)
    print('{} samples found in {} train scenes'.format(len(train_set),
                                                       len(train_set.scenes)))
    print('{} samples found in {} valid scenes'.format(len(val_set),
                                                       len(val_set.scenes)))
    train_loader = torch.utils.data.DataLoader(train_set,
                                               batch_size=args.batch_size,
                                               shuffle=True,
                                               num_workers=args.workers,
                                               pin_memory=True)
    val_loader = torch.utils.data.DataLoader(val_set,
                                             batch_size=4 * args.batch_size,
                                             shuffle=False,
                                             num_workers=args.workers,
                                             pin_memory=True)

    env['train_set'] = train_set
    env['val_set'] = val_set
    env['train_loader'] = train_loader
    env['val_loader'] = val_loader

    if args.epoch_size == 0:
        args.epoch_size = len(train_loader)

    # create model
    print("=> creating model")
    pose_net = models.PoseNet(seq_length=args.sequence_length,
                              batch_norm=args.bn in ['pose',
                                                     'both']).to(device)

    if args.pretrained_pose:
        print("=> using pre-trained weights for pose net")
        weights = torch.load(args.pretrained_pose)
        pose_net.load_state_dict(weights['state_dict'], strict=False)

    depth_net = models.DepthNet(depth_activation="elu",
                                batch_norm=args.bn in ['depth',
                                                       'both']).to(device)

    if args.pretrained_depth:
        print("=> using pre-trained DepthNet model")
        data = torch.load(args.pretrained_depth)
        depth_net.load_state_dict(data['state_dict'])

    cudnn.benchmark = True
    depth_net = torch.nn.DataParallel(depth_net)
    pose_net = torch.nn.DataParallel(pose_net)

    env['depth_net'] = depth_net
    env['pose_net'] = pose_net

    print('=> setting adam solver')

    optim_params = [{
        'params': depth_net.parameters(),
        'lr': args.lr
    }, {
        'params': pose_net.parameters(),
        'lr': args.lr
    }]
    # parameters = chain(depth_net.parameters(), pose_exp_net.parameters())
    optimizer = torch.optim.Adam(optim_params,
                                 betas=(args.momentum, args.beta),
                                 weight_decay=args.weight_decay)
    scheduler = torch.optim.lr_scheduler.StepLR(optimizer,
                                                args.lr_decay_frequency,
                                                gamma=0.5)
    env['optimizer'] = optimizer
    env['scheduler'] = scheduler

    with open(args.save_path / args.log_summary, 'w') as csvfile:
        writer = csv.writer(csvfile, delimiter='\t')
        writer.writerow(['train_loss', 'validation_loss'])

    with open(args.save_path / args.log_full, 'w') as csvfile:
        writer = csv.writer(csvfile, delimiter='\t')
        writer.writerow(
            ['train_loss', 'photo_loss', 'explainability_loss', 'smooth_loss'])

    logger = TermLogger(n_epochs=args.epochs,
                        train_size=min(len(train_loader), args.epoch_size),
                        valid_size=len(val_loader))
    logger.epoch_bar.start()
    env['logger'] = logger

    env['args'] = args

    return env
Exemple #5
0
def main():
    global best_error, n_iter, device
    args = parser.parse_args()
    if args.dataset_format == 'stacked':
        from datasets.stacked_sequence_folders import SequenceFolder
    elif args.dataset_format == 'sequential':
        from datasets.sequence_folders import SequenceFolder
    timestamp = datetime.datetime.now().strftime("%m-%d-%H:%M")
    args.save_path = 'checkpoints' / Path(args.name) / timestamp
    print('=> will save everything to {}'.format(args.save_path))
    args.save_path.makedirs_p()
    torch.manual_seed(args.seed)

    training_writer = SummaryWriter(args.save_path)

    # Data loading
    normalize = custom_transforms.Normalize(mean=[0.5, 0.5, 0.5],
                                            std=[0.5, 0.5, 0.5])
    train_transform = custom_transforms.Compose([
        custom_transforms.RandomHorizontalFlip(),
        custom_transforms.RandomScaleCrop(),
        custom_transforms.ArrayToTensor(), normalize
    ])
    valid_transform = custom_transforms.Compose(
        [custom_transforms.ArrayToTensor(), normalize])

    print("=> fetching scenes in '{}'".format(args.data))
    train_set = SequenceFolder(args.data,
                               transform=train_transform,
                               seed=args.seed,
                               train=True,
                               sequence_length=args.sequence_length)

    # if no Groundtruth is avalaible, Validation set is the same type as training set to measure photometric loss from warping
    if args.with_gt:
        from datasets.validation_folders import ValidationSet
        val_set = ValidationSet(args.data, transform=valid_transform)
    else:
        val_set = SequenceFolder(
            args.data,
            transform=valid_transform,
            seed=args.seed,
            train=False,
            sequence_length=args.sequence_length,
        )
    print('{} samples found in {} train scenes'.format(len(train_set),
                                                       len(train_set.scenes)))
    print('{} samples found in {} valid scenes'.format(len(val_set),
                                                       len(val_set.scenes)))
    train_loader = torch.utils.data.DataLoader(train_set,
                                               batch_size=args.batch_size,
                                               shuffle=True,
                                               num_workers=args.workers,
                                               pin_memory=True)
    val_loader = torch.utils.data.DataLoader(val_set,
                                             batch_size=args.batch_size,
                                             shuffle=False,
                                             num_workers=args.workers,
                                             pin_memory=True)

    if args.epoch_size == 0:
        args.epoch_size = len(train_loader)

    # create model
    print("=> creating model")

    disp_net = getattr(models, args.dispnet)().to(device)
    pose_net = models.PoseNet().to(device)

    if args.pretrained_pose:
        print("=> using pre-trained weights for PoseNet")
        weights = torch.load(args.pretrained_pose)
        pose_net.load_state_dict(weights['state_dict'], strict=False)
    else:
        pose_net.init_weights()

    if args.pretrained_disp:
        print("=> using pre-trained weights for DispNet")
        weights = torch.load(args.pretrained_disp)
        disp_net.load_state_dict(weights['state_dict'])
    else:
        disp_net.init_weights()

    cudnn.benchmark = True
    disp_net = torch.nn.DataParallel(disp_net)
    pose_net = torch.nn.DataParallel(pose_net)

    print('=> setting adam solver')

    optim_params = [{
        'params': disp_net.parameters(),
        'lr': args.lr
    }, {
        'params': pose_net.parameters(),
        'lr': args.lr
    }]
    optimizer = torch.optim.Adam(optim_params,
                                 betas=(args.momentum, args.beta),
                                 weight_decay=args.weight_decay)

    with open(args.save_path / args.log_summary, 'w') as csvfile:
        writer = csv.writer(csvfile, delimiter='\t')
        writer.writerow(['train_loss', 'validation_loss'])

    with open(args.save_path / args.log_full, 'w') as csvfile:
        writer = csv.writer(csvfile, delimiter='\t')
        writer.writerow(
            ['photo_loss', 'smooth_loss', 'geometry_loss', 'train_loss'])

    logger = TermLogger(n_epochs=args.epochs,
                        train_size=min(len(train_loader), args.epoch_size),
                        valid_size=len(val_loader))
    logger.epoch_bar.start()

    if args.pretrained_disp:
        logger.reset_valid_bar()
        if args.with_gt:
            errors, error_names = validate_with_gt(args, val_loader, disp_net,
                                                   0, logger)
        else:
            errors, error_names = validate_without_gt(args, val_loader,
                                                      disp_net, pose_net, 0,
                                                      logger)
        for error, name in zip(errors, error_names):
            training_writer.add_scalar(name, error, 0)
        error_string = ', '.join(
            '{} : {:.3f}'.format(name, error)
            for name, error in zip(error_names[2:9], errors[2:9]))
        logger.valid_writer.write(' * Avg {}'.format(error_string))

    for epoch in range(args.epochs):
        logger.epoch_bar.update(epoch)

        # train for one epoch
        logger.reset_train_bar()
        train_loss = train(args, train_loader, disp_net, pose_net, optimizer,
                           args.epoch_size, logger, training_writer)
        logger.train_writer.write(' * Avg Loss : {:.3f}'.format(train_loss))

        # evaluate on validation set
        logger.reset_valid_bar()
        if args.with_gt:
            errors, error_names = validate_with_gt(args, val_loader, disp_net,
                                                   epoch, logger)
        else:
            errors, error_names = validate_without_gt(args, val_loader,
                                                      disp_net, pose_net,
                                                      epoch, logger)
        error_string = ', '.join('{} : {:.3f}'.format(name, error)
                                 for name, error in zip(error_names, errors))
        logger.valid_writer.write(' * Avg {}'.format(error_string))

        for error, name in zip(errors, error_names):
            training_writer.add_scalar(name, error, epoch)

        # Up to you to chose the most relevant error to measure your model's performance, careful some measures are to maximize (such as a1,a2,a3)
        decisive_error = errors[1]
        if best_error < 0:
            best_error = decisive_error

        # remember lowest error and save checkpoint
        is_best = decisive_error < best_error
        best_error = min(best_error, decisive_error)
        save_checkpoint(args.save_path, {
            'epoch': epoch + 1,
            'state_dict': disp_net.module.state_dict()
        }, {
            'epoch': epoch + 1,
            'state_dict': pose_net.module.state_dict()
        }, is_best)

        with open(args.save_path / args.log_summary, 'a') as csvfile:
            writer = csv.writer(csvfile, delimiter='\t')
            writer.writerow([train_loss, decisive_error])
    logger.epoch_bar.finish()
 def load_model(self, path):
     self.pose_net = models.PoseNet().to(device)
     weights_pose = torch.load(path)
     self.pose_net.load_state_dict(weights_pose['state_dict'], strict=False)
     self.pose_net.eval()