Exemple #1
0
def main():
    #check device
    use_cuda = torch.cuda.is_available()
    torch.manual_seed(123)
    device = torch.device('cuda:1' if use_cuda else 'cpu')
    print('Device used:', device)

    #model create and to device
    model = models.Yolov1_vgg16bn(pretrained=True).to(device)

    #dataset init and loader warper
    #windows
    trainset = localLoader.AERIAL('hw2_train_val/train15000',
                                  transform=transforms.ToTensor())
    trainset_loader = DataLoader(trainset,
                                 batch_size=32,
                                 shuffle=True,
                                 num_workers=1,
                                 collate_fn=collate_fn)

    testset = localLoader.AERIAL('hw2_train_val/val1500',
                                 transform=transforms.ToTensor())
    testset_loader = DataLoader(testset,
                                batch_size=32,
                                shuffle=False,
                                num_workers=1,
                                collate_fn=collate_fn)

    #Debug(model, testset_loader)
    train(model, trainset_loader, testset_loader, device, 1000)
Exemple #2
0
def main():
    if not os.path.exists(args.output): 
        os.mkdir(args.output)

    torch.set_default_dtype(torch.float)
    device = utils.selectDevice()

    # Initialize model

    if args.command == "basic":
        model = models.Yolov1_vgg16bn(pretrained=True).to(device)
    elif args.command == "improve":
        model = models.Yolov1_vgg16bn_Improve(pretrained=True).to(device)

    model = utils.loadModel(args.model, model)
    model.eval()
    
    # Initialize dataset

    transform = transforms.Compose([
        transforms.Resize((448, 448)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
    ])

    # TODO: Reset as MyDataset
    testset = dataset.Testset(img_root=args.images, transform=transform)
    test_loader = DataLoader(testset, batch_size=1, shuffle=False, num_workers=4)

    # Iterative interference

    for batch_idx, (data, imgName) in enumerate(test_loader, 1):
        data = data.to(device)
        output = model(data)

        if args.command == "basic":
            boxes, classIndexs, probs = decode(output, nms=args.nms, prob_min=args.prob, iou_threshold=args.iou)
        if args.command == "improve":
            boxes, classIndexs, probs = decode(output, nms=args.nms, prob_min=args.prob, iou_threshold=args.iou, grid_num=14)

        classNames = labelEncoder.inverse_transform(classIndexs.type(torch.long).to("cpu"))
        
        export(boxes, classNames, probs, imgName[0] + ".txt", args.output)
        
        print("Predicted: [{}/{} ({:.2%})]\r".format(
            batch_idx, len(test_loader.dataset), batch_idx / len(test_loader.dataset)), end=""
        )
Exemple #3
0
test_data = Load_Data(test_label,
                      test_fname,
                      test_img,
                      test_iname,
                      train=False)

# In[16]:

# trainset_loader = DataLoader(train_data, batch_size=32, shuffle=False, num_workers=1)
testset_loader = DataLoader(test_data,
                            batch_size=1,
                            shuffle=False,
                            num_workers=1)

checkpoint_path = "/home/robot/hw2-Chee-An-Yu/pass0.092/yolo-2500.pth"
model = models.Yolov1_vgg16bn(pretrained=True)
model.eval()
optimizer = optim.SGD(model.parameters(), lr=0.00001, momentum=0.9)
device = torch.device('cuda')
model.to(device)
print('load model...')
load_checkpoint(checkpoint_path, model, optimizer)
# model.load_state_dict(torch.load('yolo-5500.pth'))
#trainset = Yolotrainset('hw2_train_val/train15000/')
#trainloader = DataLoader(trainset, batch_size=1, shuffle=False)
# valset = Yolovalset('hw2_train_val/val1500/')
# valloader = DataLoader(valset, batch_size=1, shuffle=False)
print('load valset end')

# model.eval()
Exemple #4
0
def main():
    transform = transforms.Compose([
        transforms.Resize((448, 448)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406],
                             std=[0.229, 0.224, 0.225])
    ])

    grid_num = 7 if args.command == "basic" else 14

    trainset = dataset.MyDataset(root="hw2_train_val/train15000",
                                 grid_num=grid_num,
                                 train=args.augment,
                                 transform=transform)

    testset = dataset.MyDataset(grid_num=grid_num,
                                root="hw2_train_val/val1500",
                                train=False,
                                transform=transform)

    trainLoader = DataLoader(trainset,
                             batch_size=args.batchs,
                             shuffle=True,
                             num_workers=args.worker)
    testLoader = DataLoader(testset,
                            batch_size=1,
                            shuffle=False,
                            num_workers=args.worker)
    device = utils.selectDevice(show=True)

    if args.command == "basic":
        model = models.Yolov1_vgg16bn(pretrained=True).to(device)
        criterion = models.YoloLoss(7., 2., 5., 0.5, device).to(device)
        optimizer = optim.SGD(model.parameters(),
                              lr=args.lr,
                              weight_decay=1e-4)
        scheduler = optim.lr_scheduler.MultiStepLR(optimizer, [20, 45, 55],
                                                   gamma=0.1)
        start_epoch = 0

        if args.load:
            model, optimizer, start_epoch, scheduler = utils.loadCheckpoint(
                args.load, model, optimizer, scheduler)

        model = train(model,
                      criterion,
                      optimizer,
                      scheduler,
                      trainLoader,
                      testLoader,
                      start_epoch,
                      args.epochs,
                      device,
                      lr=args.lr,
                      grid_num=7)

    elif args.command == "improve":
        model_improve = models.Yolov1_vgg16bn_Improve(
            pretrained=True).to(device)
        criterion = models.YoloLoss(14., 2., 5, 0.5, device).to(device)
        optimizer = optim.SGD(model_improve.parameters(),
                              lr=args.lr,
                              weight_decay=1e-4)
        scheduler = optim.lr_scheduler.MultiStepLR(optimizer, [20, 40, 70],
                                                   gamma=0.1)
        start_epoch = 0

        if args.load:
            model_improve, optimizer, start_epoch, scheduler = utils.loadCheckpoint(
                args.load, model, optimizer, scheduler)

        model_improve = train(model_improve,
                              criterion,
                              optimizer,
                              scheduler,
                              trainLoader,
                              testLoader,
                              start_epoch,
                              args.epochs,
                              device,
                              lr=args.lr,
                              grid_num=7,
                              save_name="Yolov1-Improve")
Exemple #5
0
                        action='store',
                        dest='test_dir',
                        default='./hw2_train_val/val1500/images/')
    parser.add_argument('-p',
                        action='store',
                        dest='pred_dir',
                        default='./hw2_train_val/val1500/predTxt_hbb/')
    parser.add_argument('-g', action='store', dest='grid_size', default=7)
    parser.add_argument('-ep', action='store', dest='epochs', default=30)
    args = parser.parse_args()

    if int(args.grid_size) == 8:
        print('Running improved model')
        model = models.Improved_model(pretrained=True).to(device)
    else:
        model = models.Yolov1_vgg16bn(pretrained=True).to(device)

    if args.train:
        print('Training start')
        train(model, int(args.epochs), grid_size=int(args.grid_size))
    else:
        if args.ckpt_path == None:
            print("Need ckpt path!")
        elif args.eval:
            print('Test with: ', args.ckpt_path.split('/')[-1])
            optimizer = optim.Adam(model.parameters(), lr=0.0001)
            state = torch.load(args.ckpt_path)
            model.load_state_dict(state['state_dict'])
            optimizer.load_state_dict(state['optimizer'])
            gen_pred_file(model,
                          pred_path=args.pred_dir,