Exemple #1
0
def get_arguments():
    parser = argparse.ArgumentParser(description='Tree segmentation')

    # Model parameters
    parser.add_argument(
        '--nfeatures',
        type=int,
        default=8,
        help='number of features present in the first layer of the network')
    parser.add_argument('--input',
                        default='/storage/workspace/dtd/images/scaly',
                        help='input image path')
    parser.add_argument('--display',
                        action='store_true',
                        default=False,
                        help='display progress of generated images')
    parser.add_argument(
        '--image_size',
        type=int,
        default=32,
        help='the height / width of the input image to network')
    parser.add_argument('--beta1',
                        type=float,
                        default=0.5,
                        help='beta1 for adam. default=0.5')

    parser.add_argument('--output', default="output", help="output path")

    common.add(parser)
    models.add_arguments(parser)

    return parser.parse_args()
Exemple #2
0
def _get_arguments(argv):
    parser = argparse.ArgumentParser()
    config.add_arguments(parser)
    models.add_arguments(parser)
    solver.add_arguments(parser)
    loss_metrics.add_arguments(parser)
    input_pipeline.add_arguments(parser)
    custom_evaluator.add_arguments(parser)

    args = parser.parse_args(argv[1:])
    config.check_args(args, parser)
    config.fill_default_args(args)

    return args
Exemple #3
0
    '--train_path',
    default='train.hdf5',
    help='Input path for pre-processed training data and labels')
parser.add_argument(
    '--val_path',
    default='val.hdf5',
    help='Input path for pre-processed validation data and labels')
parser.add_argument('--output_path',
                    default='model.hdf5',
                    help='Output path for model weights')
parser.add_argument('--log_path',
                    default='logs/UCSD/upscale/',
                    help='Output path for TensorFlow logs')

# model specification
parser = models.add_arguments(parser)

# training
parser.add_argument(
    '--gpu_frac',
    type=float,
    default=0.,
    help='Fraction of GPU memory to allocate (TensorFlow only)')
parser.add_argument(
    '--tile_size',
    type=int,
    default='-1',
    help='Tile size: -1 for no tiling, 1 for patches, n>1 for nxn tiles')
parser.add_argument('--batch_size', type=int, default=32, help='Batch size')
parser.add_argument('--batches_per_epoch',
                    type=int,