def __init__(self,id_request,logController): self.logController = logController self.crawlerState='Esperando' self.crawlerProgress=0 self.totalCrawling=0 self.scraperState='Esperando' self.scraperProgress=0 self.totalScraping=0 self.IRState='Esperando' self.IRProgress=0 self.totalIR=0 self.exception= "" self.stop=False self.state=dict() self.id_request = id_request self.config = config() self.db = self.config.getDbProgress() self.cursor = self.db.cursor() with db_session: estado = WsRequestState(estado = unicode(self.state), stop = False , search_keys = id_request) commit() flush() # para inicializar el estado en la bd self.get_progress() self.actualizar_estado()
def pending_flush(request): """ empties the pending queue without doing anything about the jobs. for debug use. """ try : config = models.config() except DeadlineExceededError, e : logging.warning( '%s error getting whistler_config' % e) logging.warning( traceback.format_exc() ) return None
def pending(request): """ returns json with data for angles.""" try : config = models.config() except DeadlineExceededError, e : logging.warning( '%s error getting whistler_config' % e) logging.warning( traceback.format_exc() ) return None
def complete(request): """ called from poller on sucessful run.""" config = models.config() response = authenticate(request, config) if response: return response run_id = request.POST.get("run_id") run = get_object_or_404(models.AnglesRun, id=run_id) try : run.completed = datetime.datetime.utcnow() # make a post per uploaded file for key,infile in request.FILES.items(): file_name = files.blobstore.create(mime_type='image/png') with files.open(file_name, 'a') as f: f.write(infile.read()) files.finalize(file_name) blob_key = files.blobstore.get_blob_key(file_name) logging.info("Uploaded a file to blob_key %s" % blob_key) logging.info("Making a blog post on %s" % run.weavr_token.weavr_url) post = run.weavr_token.post("/1/weavr/post/", { "category":"article", "title": request.POST.get("message"), "keywords": "Angles", "body" : "<img src='http://weavrs-angles.appspot.com/angles/blob/%s/'>" % blob_key }) run.post_id = post["post_id"] run.success = True run.error_record = None run.save() except OAuthForbiddenException, e : logging.info( '%s error posting to weavr' % e) logging.info( traceback.format_exc() ) run.success = False run.error_record = '%s error posting to weavr' % e run.save()
ckpt, mode='train') # test data wav_list = glob.glob(os.path.join(FLAGS.test_data_dir, '*wav')) util_train.infer_testset(model_graph, sess, audio_length, word_dict, wav_list, FLAGS.result_dir, batch_size, ckpter.saver, ckpt) # validation stats evaluator.stats_validation(ckpt.split('-')[-1]) sess.close() if __name__ == '__main__': parser = argparse.ArgumentParser() models.config(parser) MODEL_FLAGS, _ = parser.parse_known_args() parser.add_argument('--data_url', type=str, default='http://download.tensorflow.org/data/' 'speech_commands_v0.01.tar.gz') parser.add_argument('--train_data_dir', type=str, default='dataset/train/audio/') parser.add_argument('--test_data_dir', type=str, default='dataset/test/audio/') parser.add_argument('--result_dir', type=str, default='run') parser.add_argument('--log_dir', type=str, default='run/logs') parser.add_argument('--ckpt_dir', type=str, default='run/ckpts')