args.rec_hidden, 128, learn_emb=args.learn_emb).to(device) elif args.enc == 'mtan_rnn': rec = models.enc_mtan_rnn(dim, torch.linspace(0, 1., args.num_ref_points), args.latent_dim, args.rec_hidden, embed_time=128, learn_emb=args.learn_emb, num_heads=args.enc_num_heads).to(device) if args.dec == 'rnn3': dec = models.dec_rnn3(dim, torch.linspace(0, 1., 128), args.latent_dim, args.gen_hidden, 128, learn_emb=args.learn_emb).to(device) elif args.dec == 'mtan_rnn': dec = models.dec_mtan_rnn(dim, torch.linspace(0, 1., args.num_ref_points), args.latent_dim, args.gen_hidden, embed_time=128, learn_emb=args.learn_emb, num_heads=args.dec_num_heads).to(device) classifier = models.create_classifier(args.latent_dim, args.rec_hidden).to(device) params = (list(rec.parameters()) + list(dec.parameters()) + list(classifier.parameters()))
elif args.enc == "mtan_rnn": rec = models.enc_mtan_rnn( dim, torch.linspace(0, 1.0, args.num_ref_points), args.latent_dim, args.rec_hidden, embed_time=128, learn_emb=args.learn_emb, num_heads=args.enc_num_heads, ).to(device) if args.dec == "rnn3": dec = models.dec_rnn3( dim, torch.linspace(0, 1.0, args.num_ref_points), args.latent_dim, args.gen_hidden, 128, learn_emb=args.learn_emb, ).to(device) elif args.dec == "mtan_rnn": dec = models.dec_mtan_rnn( dim, torch.linspace(0, 1.0, args.num_ref_points), args.latent_dim, args.gen_hidden, embed_time=128, learn_emb=args.learn_emb, num_heads=args.dec_num_heads, ).to(device) params = list(dec.parameters()) + list(rec.parameters())