Exemple #1
0
 def do_update(self, line):
     """Update a given instance of a model"""
     try:
         tokens = split(line)
     except ValueError:
         return None
     if len(tokens) < 1:
         print("** class name missing **")
     else:
         objects = models.storage.all()
         cls = models.getmodel(tokens[0])
         if cls is None:
             print("** class doesn't exist **")
         elif len(tokens) < 2:
             print("** instance id missing **")
         elif ".".join(tokens[:2]) not in objects:
             print("** no instance found **")
         elif len(tokens) < 3:
             print("** attribute name missing **")
         elif len(tokens) < 4:
             print("** value missing **")
         else:
             obj = objects[".".join(tokens[:2])]
             for key, value in zip(tokens[2::2], tokens[3::2]):
                 try:
                     setattr(obj, key, int(value))
                 except ValueError:
                     try:
                         setattr(obj, key, float(value))
                     except ValueError:
                         try:
                             setattr(obj, key, str(value))
                         except ValueError:
                             pass
             obj.save()
Exemple #2
0
 def reload(self):
     """
     Load the dictionary of saved model instances from the filesystem
     """
     try:
         with open(self.__class__.__file_path, "r") as ifile:
             objects = load(ifile)
             for key, val in objects.items():
                 cls = models.getmodel(key.split(".")[0])
                 if cls:
                     self.__class__.__objects[key] = cls(**val)
     except FileNotFoundError:
         pass
Exemple #3
0
 def do_create(self, line):
     """Instantiate a given model"""
     try:
         tokens = split(line)
     except ValueError:
         return None
     if len(tokens) < 1:
         print("** class name missing **")
     else:
         cls = models.getmodel(tokens[0])
         if cls is None:
             print("** class doesn't exist **")
         else:
             instance = cls()
             models.storage.save()
             print(instance.id)
Exemple #4
0
 def do_all(self, line):
     """Show all instances of a given model or if unspecified, all models"""
     try:
         tokens = split(line)
     except ValueError:
         return
     if len(tokens) < 1:
         objects = models.storage.all()
         print([str(obj) for obj in objects.values()])
     else:
         cls = models.getmodel(tokens[0])
         if cls is None:
             print("** class doesn't exist **")
             return
         objects = models.storage.all()
         print([str(obj) for obj in objects.values() if type(obj) is cls])
Exemple #5
0
 def do_count(self, line):
     """Count the instances of a given model"""
     try:
         tokens = split(line)
     except ValueError:
         return None
     objects = models.storage.all()
     if len(tokens) < 1:
         print("** class name missing **")
     else:
         cls = models.getmodel(tokens[0])
         if cls is None:
             print("** class doesn't exist **")
         else:
             matches = 0
             for obj in objects.values():
                 if type(obj) is cls:
                     matches += 1
             print(matches)
Exemple #6
0
 def do_show(self, line):
     """Show a given instance of a model"""
     try:
         tokens = split(line)
     except ValueError:
         return None
     if len(tokens) < 1:
         print("** class name missing **")
     else:
         objects = models.storage.all()
         cls = models.getmodel(tokens[0])
         if cls is None:
             print("** class doesn't exist **")
         elif len(tokens) < 2:
             print("** instance id missing **")
         elif ".".join(tokens[:2]) not in objects:
             print("** no instance found **")
         else:
             print(objects[".".join(tokens[:2])])
Exemple #7
0
 def do_destroy(self, line):
     """Delete a given instance of a model"""
     try:
         tokens = split(line)
     except ValueError:
         return
     if len(tokens) < 1:
         print("** class name missing **")
         return
     cls = models.getmodel(tokens[0])
     if cls is None:
         print("** class doesn't exist **")
         return
     if len(tokens) < 2:
         print("** instance id missing **")
         return
     objects = models.storage.all()
     key = ".".join(tokens[0:2])
     if key not in objects:
         print("** no instance found **")
         return
     del objects[key]
     models.storage.save()
Exemple #8
0
dataLoaderTrain = DataLoader(dataset=datasetTrain,
                             batch_size=trBatchSize,
                             shuffle=True,
                             num_workers=24,
                             pin_memory=True)
dataLoaderVal = DataLoader(dataset=datasetValid,
                           batch_size=trBatchSize,
                           shuffle=False,
                           num_workers=24,
                           pin_memory=True)
dataLoaderTest = DataLoader(dataset=datasetTest,
                            num_workers=24,
                            pin_memory=True)

model = mod.getmodel(modelName, nnClassCount)
model = torch.nn.DataParallel(model)

if action == "train":
    # train the model
    timestampTime = time.strftime("%H%M%S")
    timestampDate = time.strftime("%d%m%Y")
    timestampLaunch = timestampDate + '-' + timestampTime

    batch, losst, losse = CheXpertTrainer.train(CheXpertTrainer,
                                                model,
                                                dataLoaderTrain,
                                                dataLoaderVal,
                                                nnClassCount,
                                                trMaxEpoch,
                                                timestampLaunch,
Exemple #9
0
dataLoaderTrain = DataLoader(dataset=datasetTrain,
                             batch_size=trBatchSize,
                             shuffle=True,
                             num_workers=24,
                             pin_memory=True)
dataLoaderVal = DataLoader(dataset=datasetValid,
                           batch_size=trBatchSize,
                           shuffle=False,
                           num_workers=24,
                           pin_memory=True)
dataLoaderTest = DataLoader(dataset=datasetTest,
                            num_workers=24,
                            pin_memory=True)

# initialize and load the model
model = mod.getmodel(modelName, nnClassCount)
model = torch.nn.DataParallel(model).cuda()

if action == "train":
    # train the model
    timestampTime = time.strftime("%H%M%S")
    timestampDate = time.strftime("%d%m%Y")
    timestampLaunch = timestampDate + '-' + timestampTime

    batch, losst, losse = CheXpertTrainer.train(CheXpertTrainer,
                                                model,
                                                dataLoaderTrain,
                                                dataLoaderVal,
                                                nnClassCount,
                                                trMaxEpoch,
                                                timestampLaunch,