def main(global_config, **settings):
    """ This function returns a Pyramid WSGI application.
    """
    engine = engine_from_config(settings, 'sqlalchemy.')
    DBSession.configure(bind=engine)
    Base.metadata.bind = engine
    init_model()

    session_factory = session_factory_from_settings(settings)
    if 'localization' not in settings:
        settings['localization'] = 'id_ID.UTF-8'
    locale.setlocale(locale.LC_ALL, settings['localization'])        
    if 'timezone' not in settings:
        settings['timezone'] = DefaultTimeZone
    config = Configurator(settings=settings,
                          root_factory='reklame.models.RootFactory',
                          session_factory=session_factory)
    config.include('pyramid_beaker')                          
    config.include('pyramid_chameleon')

    authn_policy = AuthTktAuthenticationPolicy('sosecret',
                    callback=group_finder, hashalg='sha512')
    authz_policy = ACLAuthorizationPolicy()                          
    config.set_authentication_policy(authn_policy)
    config.set_authorization_policy(authz_policy)
    config.add_request_method(get_user, 'user', reify=True)
    config.add_request_method(get_title, 'title', reify=True)
    config.add_notfound_view(RemoveSlashNotFoundViewFactory())        
                          
    config.add_static_view('static', 'static', cache_max_age=3600)
    config.add_static_view('deform_static', 'deform:static')
    config.add_static_view('files', settings['static_files'])    
    ############################################################################
    config.include('pyramid_rpc.jsonrpc') # JSON RPC
    json_renderer = JSON()
    json_renderer.add_adapter(datetime.datetime, lambda v, request: v.isoformat())
    json_renderer.add_adapter(datetime.date, lambda v, request: v.isoformat())
    config.add_renderer('myjson', json_renderer)
    config.add_jsonrpc_endpoint('ws_reklame', '/ws/reklame', default_renderer="myjson")       
    ############################################################################
 
    routes = DBSession.query(Route.kode, Route.path, Route.nama).all()
    for route in routes:
        config.add_route(route.kode, route.path)
        if route.nama:
            titles[route.kode] = ' - '.join([main_title, route.nama])     
            
    
    config.scan()
    
    app = config.make_wsgi_app()
    from paste.translogger import TransLogger
    app = TransLogger(app, setup_console_handler=False)    
    return app
Exemple #2
0
    def connectToDatabase(self, dburl):
        """
        Connect to our database and return a Session object

        :param dburl: a valid SQLAlchemy URL string
        """

        log.debug("connect db")
        engine = db.sa.create_engine(dburl, echo=False)
        db.init_model(engine)
        session = db.DBSession()
        self.setupDatabase(session, engine)
        return session
def mixture_experiments(train, dev, glove, splits = 5):
    for i in range(splits):
        model_name = 'mixture' + str(i)
        print 'Model', model_name
        model = models.init_model()
        div = len(train) / splits
        models.train_model(train[:i*div] + train[(i+1)*div:splits*div], dev, glove, model, 'models/' + model_name)
def main(global_config, **settings):
    """ This function returns a Pyramid WSGI application.
    """
    engine = engine_from_config(settings, "sqlalchemy.")
    DBSession.configure(bind=engine)
    Base.metadata.bind = engine
    init_model()

    session_factory = session_factory_from_settings(settings)
    if "localization" not in settings:
        settings["localization"] = "id_ID.UTF-8"
    locale.setlocale(locale.LC_ALL, settings["localization"])
    if "timezone" not in settings:
        settings["timezone"] = DefaultTimeZone
    config = Configurator(
        settings=settings, root_factory="inventory.models.RootFactory", session_factory=session_factory
    )
    config.include("pyramid_beaker")
    config.include("pyramid_chameleon")

    authn_policy = AuthTktAuthenticationPolicy("sosecret", callback=group_finder, hashalg="sha512")
    authz_policy = ACLAuthorizationPolicy()
    config.set_authentication_policy(authn_policy)
    config.set_authorization_policy(authz_policy)
    config.add_request_method(get_user, "user", reify=True)
    config.add_request_method(get_title, "title", reify=True)
    config.add_notfound_view(RemoveSlashNotFoundViewFactory())

    config.add_static_view("static", "static", cache_max_age=3600)
    config.add_static_view("deform_static", "deform:static")
    config.add_static_view("files", settings["static_files"])

    routes = DBSession.query(Route.kode, Route.path, Route.nama).all()
    for route in routes:
        config.add_route(route.kode, route.path)
        if route.nama:
            titles[route.kode] = " - ".join([main_title, route.nama])

    config.scan()

    app = config.make_wsgi_app()
    from paste.translogger import TransLogger

    app = TransLogger(app, setup_console_handler=False)
    return app
def extended_tautologies(train, dev, glove):
    augment_data = generate_all(train)
    from random import shuffle
    shuffle(augment_data)
    augment_weight = [0, 0.05, 0.15, 0.5]
    for w in augment_weight:
        new_train = train + augment_data[:int(len(train)*w)]
	str =  str(w).replace('.','')
        model = models.init_model()
	models.train_model(new_train, dev, glove, model = model, model_dir = 'models/aug' + w_str)
def grid_experiments(train, dev, glove, embed_size = 300, hidden_size = 100):
    lr_vec = [0.001, 0.0003, 0.0001]
    dropout_vec = [0.0, 0.1, 0.2]
    reg_vec = [0.0, 0.001, 0.0003, 0.0001]

    for params in itertools.product(lr_vec, dropout_vec, reg_vec):
	filename = 'lr' + str(params[0]).replace('.','') + '_drop' + str(params[1]).replace('.','') + '_reg' + str(params[2]).replace('.','')
	print 'Model', filename
	model = models.init_model(embed_size, hidden_size, params[0], params[1], params[2])
	models.train_model(train, dev, glove, model, 'models/' + filename)    
def main():
    use_gpu = torch.cuda.is_available()
    if args.use_cpu: use_gpu = False
    pin_memory = True if use_gpu else False

    if not args.evaluate:
        sys.stdout = Logger(osp.join(args.save_dir, 'log_train.txt'))
    else:
        sys.stdout = Logger(osp.join(args.save_dir, 'log_test.txt'))
    print("==========\nArgs:{}\n==========".format(args))

    if use_gpu:
        print("Currently using GPU {}".format(args.gpu_devices))
        os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_devices
        cudnn.benchmark = True
        torch.cuda.manual_seed_all(args.seed)
    else:
        print("Currently using CPU (GPU is highly recommended)")

    print("Initializing dataset {}".format(args.dataset))
    dataset = data_manager.init_img_dataset(
        root=args.root,
        name=args.dataset,
        split_id=args.split_id,
        cuhk03_labeled=args.cuhk03_labeled,
        cuhk03_classic_split=args.cuhk03_classic_split,
    )

    # data augmentation
    transform_train = T.Compose([
        T.Random2DTranslation(args.height, args.width),
        T.RandomHorizontalFlip(),
        T.ToTensor(),
        T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
    ])

    transform_test = T.Compose([
        T.Resize((args.height, args.width)),
        T.ToTensor(),
        T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
    ])

    trainloader = DataLoader(
        ImageDataset(dataset.train, transform=transform_train),
        sampler=RandomIdentitySampler(dataset.train,
                                      num_instances=args.num_instances),
        batch_size=args.train_batch,
        num_workers=args.workers,
        pin_memory=pin_memory,
        drop_last=True,
    )

    queryloader = DataLoader(
        ImageDataset(dataset.query, transform=transform_test),
        batch_size=args.test_batch,
        shuffle=False,
        num_workers=args.workers,
        pin_memory=pin_memory,
        drop_last=False,
    )

    galleryloader = DataLoader(
        ImageDataset(dataset.gallery, transform=transform_test),
        batch_size=args.test_batch,
        shuffle=False,
        num_workers=args.workers,
        pin_memory=pin_memory,
        drop_last=False,
    )

    print("Initializing model: {}".format(args.arch))
    model = models.init_model(name=args.arch,
                              num_classes=dataset.num_train_pids,
                              loss={'softmax', 'metric'},
                              aligned=True,
                              use_gpu=use_gpu)
    print("Model size: {:.5f}M".format(
        sum(p.numel() for p in model.parameters()) / 1000000.0))
    if args.labelsmooth:
        criterion_class = CrossEntropyLabelSmooth(
            num_classes=dataset.num_train_pids, use_gpu=use_gpu)
    else:
        criterion_class = CrossEntropyLoss(use_gpu=use_gpu)
    criterion_metric = TripletLossAlignedReID(margin=args.margin)
    optimizer = init_optim(args.optim, model.parameters(), args.lr,
                           args.weight_decay)

    if args.stepsize > 0:
        scheduler = lr_scheduler.StepLR(optimizer,
                                        step_size=args.stepsize,
                                        gamma=args.gamma)
    start_epoch = args.start_epoch

    if args.resume:
        print("Loading checkpoint from '{}'".format(args.resume))
        checkpoint = torch.load(args.resume)
        model.load_state_dict(checkpoint['state_dict'])
        start_epoch = checkpoint['epoch']

    if use_gpu:
        model = nn.DataParallel(model).cuda()

    if args.evaluate:
        print("Evaluate only")
        test(model, queryloader, galleryloader, use_gpu)
        return 0

    start_time = time.time()
    train_time = 0
    best_rank1 = -np.inf
    best_epoch = 0
    print("==> Start training")

    for epoch in range(start_epoch, args.max_epoch):
        start_train_time = time.time()
        train(epoch, model, criterion_class, criterion_metric, optimizer,
              trainloader, use_gpu)
        train_time += round(time.time() - start_train_time)

        if args.stepsize > 0: scheduler.step()

        if (epoch + 1) > args.start_eval and args.eval_step > 0 and (
                epoch + 1) % args.eval_step == 0 or (epoch +
                                                     1) == args.max_epoch:
            print("==> Test")
            rank1 = test(model, queryloader, galleryloader, use_gpu)
            is_best = rank1 > best_rank1
            if is_best:
                best_rank1 = rank1
                best_epoch = epoch + 1

            if use_gpu:
                state_dict = model.module.state_dict()
            else:
                state_dict = model.state_dict()
            save_checkpoint(
                {
                    'state_dict': state_dict,
                    'rank1': rank1,
                    'epoch': epoch,
                }, is_best,
                osp.join(args.save_dir,
                         'checkpoint_ep' + str(epoch + 1) + '.pth.tar'))

    print("==> Best Rank-1 {:.1%}, achieved at epoch {}".format(
        best_rank1, best_epoch))

    elapsed = round(time.time() - start_time)
    elapsed = str(datetime.timedelta(seconds=elapsed))
    train_time = str(datetime.timedelta(seconds=train_time))
    print(
        "Finished. Total elapsed time (h:m:s): {}. Training time (h:m:s): {}.".
        format(elapsed, train_time))
Exemple #8
0
)

galleryloader = DataLoader(
    VideoDataset(dataset.gallery,
                 seq_len=args.seq_len,
                 sample='dense',
                 transform=transform_test),
    batch_size=args.test_batch,
    shuffle=False,
    num_workers=args.workers,
    pin_memory=pin_memory,
    drop_last=False,
)

model = models.init_model(name=args.arch,
                          num_classes=dataset.num_train_pids,
                          loss={'xent', 'htri'})
print("Model size: {:.5f}M".format(
    sum(p.numel() for p in model.parameters()) / 1000000.0))

criterion_htri = TripletLoss(margin, 'cosine')
criterion_xent = CrossEntropyLabelSmooth(dataset.num_train_pids)
criterion_center_loss = CenterLoss(use_gpu=use_gpu)

if args.use_OSMCAA:
    print("USING OSM LOSS")
    print("config, alpha = %f  sigma = %f  l=%f" % (alpha, sigma, l))
    criterion_osm_caa = OSM_CAA_Loss(alpha=alpha, l=l, osm_sigma=sigma)
else:
    criterion_osm_caa = None
def main():
    torch.manual_seed(args.seed)
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_devices
    use_gpu = torch.cuda.is_available()
    if args.use_cpu: use_gpu = False

    sys.stdout = Logger(osp.join(args.save_dir, 'log_train.txt'), mode='a')
    print("==========\nArgs:{}\n==========".format(args))

    if use_gpu:
        print("Currently using GPU {}".format(args.gpu_devices))
        torch.cuda.manual_seed_all(args.seed)
    else:
        print("Currently using CPU (GPU is highly recommended)")

    print("Initializing dataset {}".format(args.dataset))
    dataset = data_manager.init_dataset(name=args.dataset, root=args.root)

    # Data augmentation
    spatial_transform_train = [
        ST.Scale((args.height, args.width), interpolation=3),
        ST.RandomHorizontalFlip(),
        ST.ToTensor(),
        ST.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]
    spatial_transform_train = ST.Compose(spatial_transform_train)

    temporal_transform_train = TT.TemporalRandomCrop(size=args.seq_len,
                                                     stride=args.sample_stride)

    spatial_transform_test = ST.Compose([
        ST.Scale((args.height, args.width), interpolation=3),
        ST.ToTensor(),
        ST.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ])
    temporal_transform_test = TT.TemporalBeginCrop(size=args.test_frames)

    pin_memory = True if use_gpu else False

    dataset_train = dataset.train
    if args.dataset == 'duke':
        dataset_train = dataset.train_dense
        print('process duke dataset')

    trainloader = DataLoader(
        VideoDataset(dataset_train,
                     spatial_transform=spatial_transform_train,
                     temporal_transform=temporal_transform_train),
        sampler=RandomIdentitySampler(dataset_train,
                                      num_instances=args.num_instances),
        batch_size=args.train_batch,
        num_workers=args.workers,
        pin_memory=pin_memory,
        drop_last=True,
    )

    queryloader = DataLoader(VideoDataset(
        dataset.query,
        spatial_transform=spatial_transform_test,
        temporal_transform=temporal_transform_test),
                             batch_size=args.test_batch,
                             shuffle=False,
                             num_workers=args.workers,
                             pin_memory=pin_memory,
                             drop_last=False)

    galleryloader = DataLoader(VideoDataset(
        dataset.gallery,
        spatial_transform=spatial_transform_test,
        temporal_transform=temporal_transform_test),
                               batch_size=args.test_batch,
                               shuffle=False,
                               num_workers=args.workers,
                               pin_memory=pin_memory,
                               drop_last=False)

    print("Initializing model: {}".format(args.arch))
    model = models.init_model(name=args.arch,
                              use_gpu=use_gpu,
                              num_classes=dataset.num_train_pids,
                              loss={'xent', 'htri'})
    print(model)

    criterion_xent = nn.CrossEntropyLoss()
    criterion_htri = TripletLoss(margin=args.margin,
                                 distance=args.distance,
                                 use_gpu=use_gpu)

    optimizer = torch.optim.Adam(model.parameters(),
                                 lr=args.lr,
                                 weight_decay=args.weight_decay)

    scheduler = lr_scheduler.MultiStepLR(optimizer,
                                         milestones=args.stepsize,
                                         gamma=args.gamma)
    start_epoch = args.start_epoch

    if use_gpu:
        model = nn.DataParallel(model).cuda()

    start_time = time.time()
    train_time = 0
    best_rank1 = -np.inf
    best_epoch = 0
    print("==> Start training")

    for epoch in range(start_epoch, args.max_epoch):

        start_train_time = time.time()
        train(epoch, model, criterion_xent, criterion_htri, optimizer,
              trainloader, use_gpu)
        train_time += round(time.time() - start_train_time)

        scheduler.step()

        if (epoch + 1) >= args.start_eval and (
                epoch + 1) % args.eval_step == 0 or epoch == 0:
            print("==> Test")
            with torch.no_grad():
                rank1 = test(model, queryloader, galleryloader, use_gpu)
            is_best = rank1 > best_rank1
            if is_best:
                best_rank1 = rank1
                best_epoch = epoch + 1

            if use_gpu:
                state_dict = model.module.state_dict()
            else:
                state_dict = model.state_dict()
            save_checkpoint(
                {
                    'state_dict': state_dict,
                    'rank1': rank1,
                    'epoch': epoch,
                }, is_best,
                osp.join(args.save_dir,
                         'checkpoint_ep' + str(epoch + 1) + '.pth.tar'))

    print("==> Best Rank-1 {:.1%}, achieved at epoch {}".format(
        best_rank1, best_epoch))

    elapsed = round(time.time() - start_time)
    elapsed = str(datetime.timedelta(seconds=elapsed))
    train_time = str(datetime.timedelta(seconds=train_time))
    print(
        "Finished. Total elapsed time (h:m:s): {}. Training time (h:m:s): {}.".
        format(elapsed, train_time))
Exemple #10
0
def main(global_config, **settings):
    """ This function returns a Pyramid WSGI application.
    """
    engine = engine_from_config(settings, 'sqlalchemy.')
    DBSession.configure(bind=engine)
    Base.metadata.bind = engine
    
    if 'pbb.url' in settings and settings['pbb.url']:
        from models.pbb import (
              pbbDBSession,
              pbbBase)
        pbb_engine = engine_from_config(settings, 'pbb.')
        pbbDBSession.configure(bind=pbb_engine)
        pbbBase.metadata.bind = pbb_engine
        pbbBase.pbb_schema = 'pbb_schema' in settings and settings['pbb_schema'] or 'PBB'
    
    init_model()

    session_factory = session_factory_from_settings(settings)
    if 'localization' not in settings:
        settings['localization'] = 'id_ID.UTF-8'
    locale.setlocale(locale.LC_ALL, settings['localization'])        
    if 'timezone' not in settings:
        settings['timezone'] = DefaultTimeZone
    config = Configurator(settings=settings,
                          root_factory='opensipkdpbb.models.RootFactory',
                          session_factory=session_factory)
    config.include('pyramid_beaker')                          
    config.include('pyramid_chameleon')

    authn_policy = AuthTktAuthenticationPolicy('sosecret',
                    callback=group_finder, hashalg='sha512')
    authz_policy = ACLAuthorizationPolicy()                          
    config.set_authentication_policy(authn_policy)
    config.set_authorization_policy(authz_policy)
    config.add_request_method(get_user, 'user', reify=True)
    config.add_request_method(get_title, 'title', reify=True)
    config.add_notfound_view(RemoveSlashNotFoundViewFactory())        
                          
    config.add_static_view('static', 'static', cache_max_age=3600)
    config.add_static_view('deform_static', 'deform:static')
    config.add_static_view('files', settings['static_files'])    
    
    ############################################################################
    from pyramid.renderers import JSON
    import datetime
    config.include('pyramid_rpc.jsonrpc') # JSON RPC
    json_renderer = JSON()
    json_renderer.add_adapter(datetime.datetime, lambda v, request: v.isoformat())
    json_renderer.add_adapter(datetime.date, lambda v, request: v.isoformat())
    config.add_renderer('myjson', json_renderer)
    config.add_jsonrpc_endpoint('ws_user', '/ws/user', default_renderer="myjson")
    config.add_jsonrpc_endpoint('ws_pbb', '/ws/pbb', default_renderer="myjson")
    
    ############################################################################
    
    for name, path, title in routes:
        config.add_route(name, path)
    config.scan()
    app = config.make_wsgi_app()
    from paste.translogger import TransLogger
    app = TransLogger(app, setup_console_handler=False)    
    return app
def main():
    torch.manual_seed(args.seed)
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_devices
    use_gpu = torch.cuda.is_available()
    if args.use_cpu: use_gpu = False

    sys.stdout = Logger(osp.join(args.save_dir, 'log_test.txt'))
    print("==========\nArgs:{}\n==========".format(args))

    if use_gpu:
        print("Currently using GPU {}".format(args.gpu_devices))
        cudnn.benchmark = True
        torch.cuda.manual_seed_all(args.seed)
    else:
        print("Currently using CPU (GPU is highly recommended)")

    print("Initializing dataset {}".format(args.dataset))
    dataset = data_manager.init_dataset(
        name=args.dataset,
        split_id=args.split_id,
        cuhk03_labeled=args.cuhk03_labeled,
        cuhk03_classic_split=args.cuhk03_classic_split,
    )

    transform_test = T.Compose([
        T.Resize((args.height, args.width)),
        T.ToTensor(),
        T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
    ])

    pin_memory = True if use_gpu else False
    #arch1 should use salience, and arch2 should use semantic parsing
    use_salience = models.use_salience(name=args.arch1)
    use_parsing = models.use_parsing(name=args.arch2)
    save_rank = True if args.save_rank else False
    use_re_ranking = True if args.use_re_ranking else False

    queryloader = DataLoader(
        ImageDataset(dataset.query,
                     transform=transform_test,
                     use_salience=use_salience,
                     use_parsing=use_parsing,
                     salience_base_path=dataset.salience_query_dir,
                     parsing_base_path=dataset.parsing_query_dir),
        batch_size=args.test_batch,
        shuffle=False,
        num_workers=args.workers,
        pin_memory=pin_memory,
        drop_last=False,
    )

    galleryloader = DataLoader(
        ImageDataset(dataset.gallery,
                     transform=transform_test,
                     use_salience=use_salience,
                     use_parsing=use_parsing,
                     salience_base_path=dataset.salience_gallery_dir,
                     parsing_base_path=dataset.parsing_gallery_dir),
        batch_size=args.test_batch,
        shuffle=False,
        num_workers=args.workers,
        pin_memory=pin_memory,
        drop_last=False,
    )

    print("Initializing model: {}".format(args.arch1))
    model1 = models.init_model(name=args.arch1,
                               num_classes=dataset.num_train_pids,
                               loss={'xent', 'htri'},
                               mid_layer=args.mid_layer)
    print("Model size: {:.5f}M".format(
        sum(p.numel() for p in model1.parameters()) / 1000000.0))
    print("Initializing model: {}".format(args.arch2))
    model2 = models.init_model(name=args.arch2,
                               num_classes=dataset.num_train_pids,
                               loss={'xent', 'htri'},
                               mid_layer=args.mid_layer)
    print("Model size: {:.5f}M".format(
        sum(p.numel() for p in model2.parameters()) / 1000000.0))

    print("Loading checkpoint from '{}'".format(args.resume1))
    checkpoint = torch.load(args.resume1)
    model1.load_state_dict(checkpoint['state_dict'])
    start_epoch = checkpoint['epoch']
    print("Resuming model 1 from epoch {}".format(start_epoch + 1))

    print("Loading checkpoint from '{}'".format(args.resume2))
    checkpoint = torch.load(args.resume2)
    model2.load_state_dict(checkpoint['state_dict'])
    start_epoch = checkpoint['epoch']
    print("Resuming model 2 from epoch {}".format(start_epoch + 1))

    if use_gpu:
        model1 = nn.DataParallel(model1).cuda()
        model2 = nn.DataParallel(model2).cuda()

    test(model1,
         model2,
         queryloader,
         galleryloader,
         use_gpu,
         use_salience=use_salience,
         use_parsing=use_parsing,
         save_dir=args.save_dir,
         epoch=-1,
         save_rank=save_rank,
         use_re_ranking=use_re_ranking)
def main():
    torch.manual_seed(args.seed)
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_devices
    use_gpu = torch.cuda.is_available()
    if args.use_cpu: use_gpu = False

    if not args.evaluate:
        sys.stdout = Logger(osp.join(args.save_dir, 'log_train.txt'))
    else:
        sys.stdout = Logger(osp.join(args.save_dir, 'log_test.txt'))
    print("==========\nArgs:{}\n==========".format(args))

    if use_gpu:
        print("Currently using GPU {}".format(args.gpu_devices))
        cudnn.benchmark = True
        torch.cuda.manual_seed_all(args.seed)
    else:
        print("Currently using CPU (GPU is highly recommended)")

    print("Initializing dataset {}".format(args.dataset))
    dataset = data_manager.init_vidreid_dataset(root=args.root, name=args.dataset)

    transform_train = T.Compose([
        T.Random2DTranslation(args.height, args.width),
        T.RandomHorizontalFlip(),
        T.ToTensor(),
        T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
    ])

    transform_test = T.Compose([
        T.Resize((args.height, args.width)),
        T.ToTensor(),
        T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
    ])

    pin_memory = True if use_gpu else False

    # decompose tracklets into images for image-based training
    new_train = []
    for img_paths, pid, camid in dataset.train:
        for img_path in img_paths:
            new_train.append((img_path, pid, camid))

    trainloader = DataLoader(
        ImageDataset(new_train, transform=transform_train),
        sampler=RandomIdentitySampler(new_train, num_instances=args.num_instances),
        batch_size=args.train_batch, num_workers=args.workers,
        pin_memory=pin_memory, drop_last=True,
    )

    queryloader = DataLoader(
        VideoDataset(dataset.query, seq_len=args.seq_len, sample='evenly', transform=transform_test),
        batch_size=args.test_batch, shuffle=False, num_workers=args.workers,
        pin_memory=pin_memory, drop_last=False,
    )

    galleryloader = DataLoader(
        VideoDataset(dataset.gallery, seq_len=args.seq_len, sample='evenly', transform=transform_test),
        batch_size=args.test_batch, shuffle=False, num_workers=args.workers,
        pin_memory=pin_memory, drop_last=False,
    )

    print("Initializing model: {}".format(args.arch))
    model = models.init_model(name=args.arch, num_classes=dataset.num_train_pids, loss={'xent', 'htri'})
    print("Model size: {:.3f} M".format(count_num_param(model)))

    criterion_xent = CrossEntropyLabelSmooth(num_classes=dataset.num_train_pids, use_gpu=use_gpu)
    criterion_htri = TripletLoss(margin=args.margin)

    optimizer = init_optim(args.optim, model.parameters(), args.lr, args.weight_decay)
    scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=args.stepsize, gamma=args.gamma)
    start_epoch = args.start_epoch

    if args.load_weights:
        # load pretrained weights but ignore layers that don't match in size
        print("Loading pretrained weights from '{}'".format(args.load_weights))
        checkpoint = torch.load(args.load_weights)
        pretrain_dict = checkpoint['state_dict']
        model_dict = model.state_dict()
        pretrain_dict = {k: v for k, v in pretrain_dict.items() if k in model_dict and model_dict[k].size() == v.size()}
        model_dict.update(pretrain_dict)
        model.load_state_dict(model_dict)

    if args.resume:
        checkpoint = torch.load(args.resume)
        model.load_state_dict(checkpoint['state_dict'])
        start_epoch = checkpoint['epoch']
        rank1 = checkpoint['rank1']
        print("Loaded checkpoint from '{}'".format(args.resume))
        print("- start_epoch: {}\n- rank1: {}".format(start_epoch, rank1))

    if use_gpu:
        model = nn.DataParallel(model).cuda()

    if args.evaluate:
        print("Evaluate only")
        test(model, queryloader, galleryloader, args.pool, use_gpu)
        return

    start_time = time.time()
    train_time = 0
    best_rank1 = -np.inf
    best_epoch = 0
    print("==> Start training")

    for epoch in range(start_epoch, args.max_epoch):
        start_train_time = time.time()
        train(epoch, model, criterion_xent, criterion_htri, optimizer, trainloader, use_gpu)
        train_time += round(time.time() - start_train_time)
        
        scheduler.step()
        
        if (epoch+1) > args.start_eval and args.eval_step > 0 and (epoch+1) % args.eval_step == 0 or (epoch+1) == args.max_epoch:
            print("==> Test")
            rank1 = test(model, queryloader, galleryloader, args.pool, use_gpu)
            is_best = rank1 > best_rank1
            
            if is_best:
                best_rank1 = rank1
                best_epoch = epoch + 1

            if use_gpu:
                state_dict = model.module.state_dict()
            else:
                state_dict = model.state_dict()
            
            save_checkpoint({
                'state_dict': state_dict,
                'rank1': rank1,
                'epoch': epoch,
            }, is_best, osp.join(args.save_dir, 'checkpoint_ep' + str(epoch+1) + '.pth.tar'))

    print("==> Best Rank-1 {:.1%}, achieved at epoch {}".format(best_rank1, best_epoch))

    elapsed = round(time.time() - start_time)
    elapsed = str(datetime.timedelta(seconds=elapsed))
    train_time = str(datetime.timedelta(seconds=train_time))
    print("Finished. Total elapsed time (h:m:s): {}. Training time (h:m:s): {}.".format(elapsed, train_time))
Exemple #13
0
def main():
    torch.manual_seed(args.seed)
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_devices
    use_gpu = torch.cuda.is_available()
    if args.use_cpu: use_gpu = False

    if not args.evaluate:
        sys.stdout = Logger(osp.join(args.save_dir, 'log_train.txt'))
    else:
        sys.stdout = Logger(osp.join(args.save_dir, 'log_test.txt'))
    print("==========\nArgs:{}\n==========".format(args))

    if use_gpu:
        print("Currently using GPU {}".format(args.gpu_devices))
        cudnn.benchmark = True
        torch.cuda.manual_seed_all(args.seed)
    else:
        print("Currently using CPU (GPU is highly recommended)")

    print("Initializing dataset {}".format(args.dataset))
    dataset = data_manager.init_dataset(name=args.dataset)

    transform_train = T.Compose([
        T.Random2DTranslation(args.height, args.width),
        T.RandomHorizontalFlip(),
        T.ToTensor(),
        T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
    ])

    transform_test = T.Compose([
        T.Resize((args.height, args.width)),
        T.ToTensor(),
        T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
    ])

    pin_memory = True if use_gpu else False

    # decompose tracklets into images for image-based training
    new_train = []
    for img_paths, pid, camid in dataset.train:
        for img_path in img_paths:
            new_train.append((img_path, pid, camid))

    trainloader = DataLoader(
        ImageDataset(new_train, transform=transform_train),
        sampler=RandomIdentitySampler(new_train,
                                      num_instances=args.num_instances),
        batch_size=args.train_batch,
        num_workers=args.workers,
        pin_memory=pin_memory,
        drop_last=True,
    )

    queryloader = DataLoader(
        VideoDataset(dataset.query,
                     seq_len=args.seq_len,
                     sample='evenly',
                     transform=transform_test),
        batch_size=args.test_batch,
        shuffle=False,
        num_workers=args.workers,
        pin_memory=pin_memory,
        drop_last=False,
    )

    galleryloader = DataLoader(
        VideoDataset(dataset.gallery,
                     seq_len=args.seq_len,
                     sample='evenly',
                     transform=transform_test),
        batch_size=args.test_batch,
        shuffle=False,
        num_workers=args.workers,
        pin_memory=pin_memory,
        drop_last=False,
    )

    print("Initializing model: {}".format(args.arch))
    model = models.init_model(name=args.arch,
                              num_classes=dataset.num_train_pids,
                              loss={'xent', 'htri'})
    print("Model size: {:.5f}M".format(
        sum(p.numel() for p in model.parameters()) / 1000000.0))

    criterion_xent = CrossEntropyLabelSmooth(
        num_classes=dataset.num_train_pids, use_gpu=use_gpu)
    criterion_htri = TripletLoss(margin=args.margin)

    optimizer = torch.optim.Adam(model.parameters(),
                                 lr=args.lr,
                                 weight_decay=args.weight_decay)
    if args.stepsize > 0:
        scheduler = lr_scheduler.StepLR(optimizer,
                                        step_size=args.stepsize,
                                        gamma=args.gamma)
    start_epoch = args.start_epoch

    if args.resume:
        print("Loading checkpoint from '{}'".format(args.resume))
        checkpoint = torch.load(args.resume)
        model.load_state_dict(checkpoint['state_dict'])
        start_epoch = checkpoint['epoch']

    if use_gpu:
        model = nn.DataParallel(model).cuda()

    if args.evaluate:
        print("Evaluate only")
        test(model, queryloader, galleryloader, args.pool, use_gpu)
        return

    start_time = time.time()
    best_rank1 = -np.inf

    for epoch in range(start_epoch, args.max_epoch):
        print("==> Epoch {}/{}".format(epoch + 1, args.max_epoch))

        train(model, criterion_xent, criterion_htri, optimizer, trainloader,
              use_gpu)

        if args.stepsize > 0: scheduler.step()

        if args.eval_step > 0 and (epoch + 1) % args.eval_step == 0 or (
                epoch + 1) == args.max_epoch:
            print("==> Test")
            rank1 = test(model, queryloader, galleryloader, args.pool, use_gpu)
            is_best = rank1 > best_rank1
            if is_best: best_rank1 = rank1

            if use_gpu:
                state_dict = model.module.state_dict()
            else:
                state_dict = model.state_dict()
            save_checkpoint(
                {
                    'state_dict': state_dict,
                    'rank1': rank1,
                    'epoch': epoch,
                }, is_best,
                osp.join(args.save_dir,
                         'checkpoint_ep' + str(epoch + 1) + '.pth.tar'))

    elapsed = round(time.time() - start_time)
    elapsed = str(datetime.timedelta(seconds=elapsed))
    print("Finished. Total elapsed time (h:m:s): {}".format(elapsed))
def main():
    torch.manual_seed(args.seed)
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_devices
    use_gpu = torch.cuda.is_available()
    if args.use_cpu: use_gpu = False

    if not args.evaluate:
        sys.stdout = Logger(osp.join(args.save_dir, 'log_train.txt'))
    else:
        sys.stdout = Logger(osp.join(args.save_dir, 'log_test.txt'))
    print("==========\nArgs:{}\n==========".format(args))

    if use_gpu:
        print("Currently using GPU {}".format(args.gpu_devices))
        cudnn.benchmark = True
        torch.cuda.manual_seed_all(args.seed)
    else:
        print("Currently using CPU (GPU is highly recommended)")

    print("Initializing dataset {}".format(args.dataset))
    dataset = data_manager.init_vidreid_dataset(root=args.root,
                                                name=args.dataset)

    transform_train = T.Compose([
        T.Random2DTranslation(args.height, args.width),
        T.RandomHorizontalFlip(),
        T.ToTensor(),
        T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
    ])

    transform_test = T.Compose([
        T.Resize((args.height, args.width)),
        T.ToTensor(),
        T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
    ])

    pin_memory = True if use_gpu else False

    # decompose tracklets into images
    new_train = []
    for img_paths, pid, camid in dataset.train:
        for img_path in img_paths:
            new_train.append((img_path, pid, camid))

    trainloader = DataLoader(
        ImageDataset(new_train, transform=transform_train),
        batch_size=args.train_batch,
        shuffle=True,
        num_workers=args.workers,
        pin_memory=pin_memory,
        drop_last=True,
    )

    queryloader = DataLoader(
        VideoDataset(dataset.query,
                     seq_len=args.seq_len,
                     sample='evenly',
                     transform=transform_test),
        batch_size=args.test_batch,
        shuffle=False,
        num_workers=args.workers,
        pin_memory=pin_memory,
        drop_last=False,
    )

    galleryloader = DataLoader(
        VideoDataset(dataset.gallery,
                     seq_len=args.seq_len,
                     sample='evenly',
                     transform=transform_test),
        batch_size=args.test_batch,
        shuffle=False,
        num_workers=args.workers,
        pin_memory=pin_memory,
        drop_last=False,
    )

    print("Initializing model: {}".format(args.arch))
    model = models.init_model(name=args.arch,
                              num_classes=dataset.num_train_pids,
                              loss={'xent'})
    print("Model size: {:.3f} M".format(count_num_param(model)))

    criterion = CrossEntropyLabelSmooth(num_classes=dataset.num_train_pids,
                                        use_gpu=use_gpu)
    optimizer = init_optim(args.optim, model.parameters(), args.lr,
                           args.weight_decay)
    scheduler = lr_scheduler.MultiStepLR(optimizer,
                                         milestones=args.stepsize,
                                         gamma=args.gamma)

    if args.fixbase_epoch > 0:
        if hasattr(model, 'classifier') and isinstance(model.classifier,
                                                       nn.Module):
            optimizer_tmp = init_optim(args.optim,
                                       model.classifier.parameters(),
                                       args.fixbase_lr, args.weight_decay)
        else:
            print(
                "Warn: model has no attribute 'classifier' and fixbase_epoch is reset to 0"
            )
            args.fixbase_epoch = 0

    if args.load_weights:
        # load pretrained weights but ignore layers that don't match in size
        print("Loading pretrained weights from '{}'".format(args.load_weights))
        checkpoint = torch.load(args.load_weights)
        pretrain_dict = checkpoint['state_dict']
        model_dict = model.state_dict()
        pretrain_dict = {
            k: v
            for k, v in pretrain_dict.items()
            if k in model_dict and model_dict[k].size() == v.size()
        }
        model_dict.update(pretrain_dict)
        model.load_state_dict(model_dict)

    if args.resume:
        if osp.isfile(args.resume):
            checkpoint = torch.load(args.resume)
            model.load_state_dict(checkpoint['state_dict'])
            args.start_epoch = checkpoint['epoch']
            rank1 = checkpoint['rank1']
            print("Loaded checkpoint from '{}'".format(args.resume))
            print("- start_epoch: {}\n- rank1: {}".format(
                args.start_epoch, rank1))
        else:
            print("=> No checkpoint found at '{}'".format(args.resume))

    if use_gpu:
        model = nn.DataParallel(model).cuda()

    if args.evaluate:
        print("Evaluate only")
        distmat = test(model,
                       queryloader,
                       galleryloader,
                       use_gpu,
                       return_distmat=True)
        if args.vis_ranked_res:
            visualize_ranked_results(
                distmat,
                dataset,
                save_dir=osp.join(args.save_dir, 'ranked_results'),
                topk=20,
            )
        return

    start_time = time.time()
    train_time = 0
    best_rank1 = -np.inf
    best_epoch = 0
    print("==> Start training")

    if args.fixbase_epoch > 0:
        print(
            "Train classifier for {} epochs while keeping base network frozen".
            format(args.fixbase_epoch))

        for epoch in range(args.fixbase_epoch):
            start_train_time = time.time()
            train(epoch,
                  model,
                  criterion,
                  optimizer_tmp,
                  trainloader,
                  use_gpu,
                  freeze_bn=True)
            train_time += round(time.time() - start_train_time)

        del optimizer_tmp
        print("Now open all layers for training")

    for epoch in range(args.start_epoch, args.max_epoch):
        start_train_time = time.time()
        train(epoch, model, criterion, optimizer, trainloader, use_gpu)
        train_time += round(time.time() - start_train_time)

        scheduler.step()

        if (epoch + 1) > args.start_eval and args.eval_step > 0 and (
                epoch + 1) % args.eval_step == 0 or (epoch +
                                                     1) == args.max_epoch:
            print("==> Test")
            rank1 = test(model, queryloader, galleryloader, args.pool, use_gpu)
            is_best = rank1 > best_rank1

            if is_best:
                best_rank1 = rank1
                best_epoch = epoch + 1

            if use_gpu:
                state_dict = model.module.state_dict()
            else:
                state_dict = model.state_dict()

            save_checkpoint(
                {
                    'state_dict': state_dict,
                    'rank1': rank1,
                    'epoch': epoch,
                }, is_best,
                osp.join(args.save_dir,
                         'checkpoint_ep' + str(epoch + 1) + '.pth.tar'))

    print("==> Best Rank-1 {:.1%}, achieved at epoch {}".format(
        best_rank1, best_epoch))

    elapsed = round(time.time() - start_time)
    elapsed = str(datetime.timedelta(seconds=elapsed))
    train_time = str(datetime.timedelta(seconds=train_time))
    print(
        "Finished. Total elapsed time (h:m:s): {}. Training time (h:m:s): {}.".
        format(elapsed, train_time))
Exemple #15
0
def main():
    #GENERAL
    torch.cuda.empty_cache()
    root = "/home/kuru/Desktop/veri-gms-master_noise/"
    train_dir = '/home/kuru/Desktop/veri-gms-master_noise/VeRispan/image_train/'
    source = {'verispan'}
    target = {'verispan'}
    workers = 4
    height = 240
    width = 240
    train_size = 32
    train_sampler = 'RandomSampler'

    #AUGMENTATION
    random_erase = True
    jitter = True
    aug = True

    #OPTIMIZATION
    opt = 'adam'
    lr = 0.0003
    weight_decay = 5e-4
    momentum = 0.9
    sgd_damp = 0.0
    nesterov = True
    warmup_factor = 0.01
    warmup_method = 'linear'

    #HYPERPARAMETER
    max_epoch = 80
    start = 0
    train_batch_size = 16
    test_batch_size = 50

    #SCHEDULER
    lr_scheduler = 'multi_step'
    stepsize = [30, 60]
    gamma = 0.1

    #LOSS
    margin = 0.3
    num_instances = 4
    lambda_tri = 1

    #MODEL
    #arch = 'resnet101'
    arch = 'resnet101_ibn_a'
    no_pretrained = False

    #TEST SETTINGS
    load_weights = '/home/kuru/Desktop/veri-gms-master/IBN-Net_pytorch0.4.1/resnet101_ibn_a.pth'
    #load_weights = None
    start_eval = 0
    eval_freq = -1

    #MISC
    use_gpu = True
    print_freq = 10
    seed = 1
    resume = ''
    save_dir = '/home/kuru/Desktop/veri-gms-master_noise/spanningtree_verinoise_101_stride2/'
    gpu_id = 0, 1
    vis_rank = True
    query_remove = True
    evaluate = False

    dataset_kwargs = {
        'source_names': source,
        'target_names': target,
        'root': root,
        'height': height,
        'width': width,
        'train_batch_size': train_batch_size,
        'test_batch_size': test_batch_size,
        'train_sampler': train_sampler,
        'random_erase': random_erase,
        'color_jitter': jitter,
        'color_aug': aug
    }
    transform_kwargs = {
        'height': height,
        'width': width,
        'random_erase': random_erase,
        'color_jitter': jitter,
        'color_aug': aug
    }

    optimizer_kwargs = {
        'optim': opt,
        'lr': lr,
        'weight_decay': weight_decay,
        'momentum': momentum,
        'sgd_dampening': sgd_damp,
        'sgd_nesterov': nesterov
    }

    lr_scheduler_kwargs = {
        'lr_scheduler': lr_scheduler,
        'stepsize': stepsize,
        'gamma': gamma
    }

    use_gpu = torch.cuda.is_available()
    log_name = 'log_test.txt' if evaluate else 'log_train.txt'
    sys.stdout = Logger(osp.join(save_dir, log_name))
    print('Currently using GPU ', gpu_id)
    cudnn.benchmark = True

    print('Initializing image data manager')
    #dataset = init_imgreid_dataset(root='/home/kuru/Desktop/veri-gms-master/', name='veri')
    dataset = init_imgreid_dataset(
        root='/home/kuru/Desktop/veri-gms-master_noise/', name='verispan')
    train = []
    num_train_pids = 0
    num_train_cams = 0
    print(len(dataset.train))

    for img_path, pid, camid, subid, countid in dataset.train:
        #print(img_path)
        path = img_path[56 + 6:90 + 6]
        #print(path)
        folder = path[1:4]
        #print(folder)
        #print(img_path, pid, camid,subid,countid)
        pid += num_train_pids
        camid += num_train_cams
        newidd = 0
        train.append((path, folder, pid, camid, subid, countid))
        #print(train)
        #break

    num_train_pids += dataset.num_train_pids
    num_train_cams += dataset.num_train_cams

    pid = 0
    pidx = {}
    for img_path, pid, camid, subid, countid in dataset.train:
        path = img_path[56 + 6:90 + 6]

        folder = path[1:4]
        pidx[folder] = pid
        pid += 1
    #print(pidx)

    sub = []
    final = 0
    xx = dataset.train
    newids = []
    print(train[0:2])
    train2 = {}
    for k in range(0, 770):
        for img_path, pid, camid, subid, countid in dataset.train:
            if k == pid:
                newid = final + subid
                sub.append(newid)
                #print(pid,subid,newid)
                newids.append(newid)
                train2[img_path] = newid
                #print(img_path, pid, camid, subid, countid, newid)

        final = max(sub)
        #print(final)
    print(len(newids), final)

    #train=train2
    #print(train2)
    train3 = []
    for img_path, pid, camid, subid, countid in dataset.train:
        #print(img_path,pid,train2[img_path])
        path = img_path[56 + 6:90 + 6]
        #print(path)
        folder = path[1:4]
        newid = train2[img_path]
        #print((path, folder, pid, camid, subid, countid,newid ))
        train3.append((path, folder, pid, camid, subid, countid, newid))

    train = train3

    # for (path, folder, pid, camid, subid, countid,newid) in train:
    #     print(path, folder)

    path = '/home/kuru/Desktop/adhi/veri-final-draft-master_noise/gmsNoise776/'
    pkl = {}
    #pkl[0] = pickle.load('/home/kuru/Desktop/veri-gms-master/gms/620.pkl')

    entries = os.listdir(path)
    for name in entries:
        f = open((path + name), 'rb')
        ccc = (path + name)
        #print(ccc)
        if name == 'featureMatrix.pkl':
            s = name[0:13]
        else:
            s = name[0:3]
        #print(s)
        #with open (ccc,"rb") as ff:
        #    pkl[s] = pickle.load(ff)
        #print(pkl[s])
        pkl[s] = pickle.load(f)
        f.close
        #print(len(pkl))

    print('=> pickle indexing')

    data_index = search(pkl)
    print(len(data_index))

    # with open('cids.pkl', 'rb') as handle:
    #     b = pickle.load(handle)
    #     #print(b)

    # with open('index.pkl', 'rb') as handle:
    #     c = pickle.load(handle)

    transform_t = train_transforms(**transform_kwargs)
    #print(train[0],train[10])

    # train4=[]
    # for path, folder, pid, camid, subid, countid,newid  in train:
    #     if countid > 3:
    #         train4.append((path, folder, pid, camid, subid, countid,newid ))

    # print(len(train4))
    # train=train4

    #data_tfr = vd(pkl_file='index.pkl', dataset = train, root_dir='/home/kuru/Desktop/veri-gms-master/VeRi/image_train/', transform=transform_t)
    data_tfr = vdspan(
        pkl_file='index_veryspan_noise.pkl',
        dataset=train,
        root_dir=
        '/home/kuru/Desktop/veri-gms-master_noise/VeRispan/image_train/',
        transform=transform_t)
    #print(data_tfr)
    #print(trainloader)
    #data_tfr2=list(data_tfr)

    df2 = []
    data_tfr_old = data_tfr
    for (img, label, index, pid, cid, subid, countid, newid) in data_tfr:
        #print("datframe",(label))
        #print(countid)
        if countid > 4:
            #print(countid)
            df2.append((img, label, index, pid, cid, subid, countid, newid))
    print("filtered final trainset length", len(df2))

    data_tfr = df2

    # with open('df2noise_ex.pkl', 'wb') as handle:
    #     b = pickle.dump(df2, handle, protocol=pickle.HIGHEST_PROTOCOL)

    # with open('df2noise.pkl', 'rb') as handle:
    #     df2 = pickle.load(handle)
    # data_tfr=df2
    # for (img,label,index,pid, cid,subid,countid,newid) in data_tfr :
    #     print("datframe",(label))

    #data_tfr = vdspansort( dataset = train, root_dir='/home/kuru/Desktop/veri-gms-master_noise/VeRispan/image_train/', transform=transform_t)

    #trainloader = DataLoader(df2, sampler=None,batch_size=train_batch_size, shuffle=True, num_workers=workers,pin_memory=True, drop_last=True)
    trainloader = DataLoader(data_tfr,
                             sampler=None,
                             batch_size=train_batch_size,
                             shuffle=True,
                             num_workers=workers,
                             pin_memory=True,
                             drop_last=True)

    for batch_idx, (img, label, index, pid, cid, subid, countid,
                    newid) in enumerate(trainloader):
        #print("trainloader",batch_idx, (label,index,pid, cid,subid,countid,newid))
        print("trainloader", batch_idx, (label))
        break

    print('Initializing test data manager')
    dm = ImageDataManager(use_gpu, **dataset_kwargs)
    testloader_dict = dm.return_dataloaders()

    print('Initializing model: {}'.format(arch))
    model = models.init_model(name=arch,
                              num_classes=num_train_pids,
                              loss={'xent', 'htri'},
                              pretrained=not no_pretrained,
                              last_stride=2)
    print('Model size: {:.3f} M'.format(count_num_param(model)))

    if load_weights is not None:
        print("weights loaded")
        load_pretrained_weights(model, load_weights)

    #checkpoint = torch.load('/home/kuru/Desktop/veri-gms-master/logg/model.pth.tar-19')
    #model._load_from_state_dict(checkpoint['state_dict'])
    #model.load_state_dict(checkpoint['state_dict'])

    #optimizer.load_state_dict(checkpoint['optimizer'])
    #print(checkpoint['epoch'])
    #print(checkpoint['rank1'])
    os.environ['CUDA_VISIBLE_DEVICES'] = '0'
    print(torch.cuda.device_count())
    model = nn.DataParallel(model).cuda() if use_gpu else model
    optimizer = init_optimizer(model, **optimizer_kwargs)

    #optimizer = init_optimizer(model)
    #optimizer.load_state_dict(checkpoint['optimizer'])

    scheduler = init_lr_scheduler(optimizer, **lr_scheduler_kwargs)
    # scheduler = WarmupMultiStepLR(optimizer, STEPS, GAMMA,
    #                               WARMUP_FACTOR,
    #                               WARMUP_EPOCHS, WARMUP_METHOD)

    criterion_xent = CrossEntropyLoss(num_classes=num_train_pids,
                                      use_gpu=use_gpu,
                                      label_smooth=True)
    criterion_htri = TripletLoss(margin=margin)
    ranking_loss = nn.MarginRankingLoss(margin=margin)

    if evaluate:
        print('Evaluate only')

        for name in target:
            print('Evaluating {} ...'.format(name))
            queryloader = testloader_dict[name]['query']
            galleryloader = testloader_dict[name]['gallery']
            _, distmat = test(model,
                              queryloader,
                              galleryloader,
                              train_batch_size,
                              use_gpu,
                              return_distmat=True)

            if vis_rank:
                visualize_ranked_results(distmat,
                                         dm.return_testdataset_by_name(name),
                                         save_dir=osp.join(
                                             save_dir, 'ranked_results', name),
                                         topk=20)
        return

    time_start = time.time()
    ranklogger = RankLogger(source, target)

    # # checkpoint = torch.load('/home/kuru/Desktop/market_all/ibna_model/model.pth.tar-79')
    # # model.load_state_dict(checkpoint['state_dict'])
    # # optimizer.load_state_dict(checkpoint['optimizer'])
    # # print(checkpoint['epoch'])
    # # start_epoch=checkpoint['epoch']
    # # start=start_epoch

    # checkpoint = torch.load('/home/kuru/Desktop/veri-gms-master/spanningtreeveri/model.pth.tar-2')
    # model.load_state_dict(checkpoint['state_dict'])
    # optimizer.load_state_dict(checkpoint['optimizer'])
    # print(checkpoint['epoch'])
    # start_epoch=checkpoint['epoch']
    # start=start_epoch

    ##start_epoch=resume_from_checkpoint('/home/kuru/Desktop/veri-gms-master/logg/model.pth.tar-20', model, optimizer=None)
    print('=> Start training')

    for epoch in range(start, max_epoch):
        print(epoch, scheduler.get_lr()[0])
        #print( torch.cuda.memory_allocated(0))
        losses = AverageMeter()
        #xent_losses = AverageMeter()
        htri_losses = AverageMeter()
        accs = AverageMeter()
        batch_time = AverageMeter()
        xent_losses = AverageMeter()

        model.train()
        for p in model.parameters():
            p.requires_grad = True  # open all layers

        end = time.time()
        for batch_idx, (img, label, index, pid, cid, subid, countid,
                        newid) in enumerate(trainloader):
            trainX, trainY = torch.zeros(
                (train_batch_size * 3, 3, height, width),
                dtype=torch.float32), torch.zeros((train_batch_size * 3),
                                                  dtype=torch.int64)
            #pids = torch.zeros((batch_size*3), dtype = torch.int16)
            #batchcount=0
            for i in range(train_batch_size):
                if (countid[i] > 4):
                    #batchcount=batchcount+1
                    #print("dfdsfs")
                    labelx = label[i]
                    indexx = index[i]
                    cidx = pid[i]
                    if indexx > len(pkl[labelx]) - 1:
                        indexx = len(pkl[labelx]) - 1

                    #maxx = np.argmax(pkl[labelx][indexx])
                    a = pkl[labelx][indexx]
                    minpos = np.argmin(ma.masked_where(a == 0, a))

                    # print(len(a))
                    # print(a)
                    # print(ma.masked_where(a==0, a))
                    # print(labelx,index,pid,cidx,minpos)
                    # print(np.array(data_index).shape)
                    # print(data_index[cidx][1])
                    pos_dic = data_tfr_old[data_index[cidx][1] + minpos]
                    #print('posdic', pos_dic)

                    neg_label = int(labelx)
                    while True:
                        neg_label = random.choice(range(1, 770))
                        #print(neg_label)
                        if neg_label is not int(labelx) and os.path.isdir(
                                os.path.join(
                                    '/home/kuru/Desktop/veri-gms-master_noise/veriNoise_train_spanning_folder',
                                    strint(neg_label))) is True:
                            break
                    negative_label = strint(neg_label)
                    neg_cid = pidx[negative_label]
                    neg_index = random.choice(
                        range(0, len(pkl[negative_label])))
                    #print(negative_label,neg_cid,neg_index,data_index[neg_cid] )
                    neg_dic = data_tfr_old[data_index[neg_cid][1] + neg_index]
                    #print('negdic', neg_dic)
                    trainX[i] = img[i]
                    trainX[i + train_batch_size] = pos_dic[0]
                    trainX[i + (train_batch_size * 2)] = neg_dic[0]
                    trainY[i] = cidx
                    trainY[i + train_batch_size] = pos_dic[3]
                    trainY[i + (train_batch_size * 2)] = neg_dic[3]
                    # trainY[i+train_batch_size] = pos_dic[7]
                    # trainY[i+(train_batch_size*2)] = neg_dic[7]
                #break
                # else:
                #     print("skiped",countid[i],subid[i],label[i])
            #break
            #print(batchcount)
            trainX = trainX.cuda()
            trainY = trainY.cuda()
            outputs, features = model(trainX)
            xent_loss = criterion_xent(outputs[0:train_batch_size],
                                       trainY[0:train_batch_size])
            htri_loss = criterion_htri(features, trainY)
            # centerloss= CENTER_LOSS_WEIGHT * center_criterion(features, trainY)

            #tri_loss = ranking_loss(features)
            #ent_loss = xent_loss(outputs[0:batch_size], trainY[0:batch_size], num_train_pids)

            #loss = htri_loss+xent_loss + centerloss
            loss = htri_loss + xent_loss

            optimizer.zero_grad()
            #optimizer_center.zero_grad()
            loss.backward()
            optimizer.step()
            # for param in center_criterion.parameters():
            #     param.grad.data *= (1. /CENTER_LOSS_WEIGHT)
            # optimizer_center.step()

            for param_group in optimizer.param_groups:
                #print(param_group['lr'] )
                lrrr = str(param_group['lr'])

            batch_time.update(time.time() - end)
            losses.update(loss.item(), trainY.size(0))
            htri_losses.update(htri_loss.item(), trainY.size(0))
            xent_losses.update(xent_loss.item(), trainY.size(0))
            accs.update(
                accuracy(outputs[0:train_batch_size],
                         trainY[0:train_batch_size])[0])

            if (batch_idx) % 50 == 0:
                print('Train ', end=" ")
                print('Epoch: [{0}][{1}/{2}]\t'
                      'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
                      'TriLoss {loss.val:.4f} ({loss.avg:.4f})\t'
                      'XLoss {xloss.val:.4f} ({xloss.avg:.4f})\t'
                      'OveralLoss {oloss.val:.4f} ({oloss.avg:.4f})\t'
                      'Acc {acc.val:.2f} ({acc.avg:.2f})\t'
                      'lr {lrrr} \t'.format(
                          epoch + 1,
                          batch_idx + 1,
                          len(trainloader),
                          batch_time=batch_time,
                          loss=htri_losses,
                          xloss=xent_losses,
                          oloss=losses,
                          acc=accs,
                          lrrr=lrrr,
                      ))

            end = time.time()

        # del loss
        # del htri_loss
        # del xent_loss
        # del htri_losses
        # del losses
        # del outputs
        # del features
        # del accs
        # del trainX
        # del trainY

        scheduler.step()
        print('=> Test')
        save_checkpoint(
            {
                'state_dict': model.state_dict(),
                #'rank1': rank1,
                'epoch': epoch + 1,
                'arch': arch,
                'optimizer': optimizer.state_dict(),
            },
            save_dir)
        GPUtil.showUtilization()
        print(torch.cuda.memory_allocated(), torch.cuda.memory_cached())
        for name in target:
            print('Evaluating {} ...'.format(name))
            queryloader = testloader_dict[name]['query']
            galleryloader = testloader_dict[name]['gallery']
            rank1, distmat = test(model, queryloader, galleryloader,
                                  test_batch_size, use_gpu)
            ranklogger.write(name, epoch + 1, rank1)
            rank2, distmat2 = test_rerank(model, queryloader, galleryloader,
                                          test_batch_size, use_gpu)
            ranklogger.write(name, epoch + 1, rank2)
        del queryloader
        del galleryloader
        del distmat
        print(torch.cuda.memory_allocated(), torch.cuda.memory_cached())
        torch.cuda.empty_cache()

        if (epoch + 1) == max_epoch:
            #if (epoch + 1) % 10 == 0:
            print('=> Test')
            save_checkpoint(
                {
                    'state_dict': model.state_dict(),
                    'rank1': rank1,
                    'epoch': epoch + 1,
                    'arch': arch,
                    'optimizer': optimizer.state_dict(),
                }, save_dir)
            for name in target:
                print('Evaluating {} ...'.format(name))
                queryloader = testloader_dict[name]['query']
                galleryloader = testloader_dict[name]['gallery']
                rank1, distmat = test(model, queryloader, galleryloader,
                                      test_batch_size, use_gpu)
                ranklogger.write(name, epoch + 1, rank1)
                # del queryloader
                # del galleryloader
                # del distmat

                if vis_rank:
                    visualize_ranked_results(
                        distmat,
                        dm.return_testdataset_by_name(name),
                        save_dir=osp.join(save_dir, 'ranked_results', name),
                        topk=20)
Exemple #16
0
def main():
    torch.manual_seed(args.seed)
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_devices
    use_gpu = torch.cuda.is_available()
    if args.use_cpu: use_gpu = False

    if not args.evaluate:
        sys.stdout = Logger(osp.join(args.save_dir, 'log_train.txt'))
    else:
        sys.stdout = Logger(osp.join(args.save_dir, 'log_test.txt'))
    print("==========\nArgs:{}\n==========".format(args))

    if use_gpu:
        print("Currently using GPU {}".format(args.gpu_devices))
        cudnn.benchmark = True
        torch.cuda.manual_seed_all(args.seed)
    else:
        print("Currently using CPU (GPU is highly recommended)")

    print("Initializing dataset {}".format(args.dataset))
    dataset = data_manager.init_img_dataset(
        root=args.root,
        name=args.dataset,
        split_id=args.split_id,
        cuhk03_labeled=args.cuhk03_labeled,
        cuhk03_classic_split=args.cuhk03_classic_split,
    )

    transform_train = T.Compose([
        T.Resize((args.height, args.width)),
        T.RandomHorizontalFlip(p=0.5),
        T.Pad(10),
        T.RandomCrop([args.height, args.width]),
        T.ToTensor(),
        T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
        torchvision.transforms.RandomErasing(p=0.5,
                                             scale=(0.02, 0.4),
                                             ratio=(0.3, 3.33),
                                             value=(0.4914, 0.4822, 0.4465))
        #T.RandomErasing(probability=0.5, sh=0.4, mean=(0.4914, 0.4822, 0.4465)),
    ])

    transform_test = T.Compose([
        T.Resize((args.height, args.width)),
        T.ToTensor(),
        T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
    ])

    pin_memory = True if use_gpu else False

    trainloader = DataLoader(
        ImageDataset(dataset.train, transform=transform_train),
        batch_size=args.train_batch,
        shuffle=True,
        num_workers=args.workers,
        pin_memory=pin_memory,
        drop_last=True,
    )

    queryloader = DataLoader(
        ImageDataset(dataset.query, transform=transform_test),
        batch_size=args.test_batch,
        shuffle=False,
        num_workers=args.workers,
        pin_memory=pin_memory,
        drop_last=False,
    )

    galleryloader = DataLoader(
        ImageDataset(dataset.gallery, transform=transform_test),
        batch_size=args.test_batch,
        shuffle=False,
        num_workers=args.workers,
        pin_memory=pin_memory,
        drop_last=False,
    )

    print("Initializing model: {}".format(args.arch))
    model = models.init_model(name=args.arch,
                              num_classes=dataset.num_train_pids,
                              loss={'ring'},
                              use_gpu=use_gpu)
    print("Model size: {:.5f}M".format(
        sum(p.numel() for p in model.parameters()) / 1000000.0))

    criterion_xent = CrossEntropyLabelSmooth(
        num_classes=dataset.num_train_pids, use_gpu=use_gpu)
    criterion_ring = RingLoss(args.weight_ring)
    if use_gpu: criterion_ring = criterion_ring.cuda()

    params = list(model.parameters()) + list(criterion_ring.parameters())
    optimizer = init_optim(args.optim, params, args.lr, args.weight_decay)
    # if args.stepsize > 0:
    #     scheduler = lr_scheduler.StepLR(optimizer, step_size=args.stepsize, gamma=args.gamma)
    '''------Modify lr_schedule here------'''
    current_schedule = init_lr_schedule(schedule=args.schedule,
                                        warm_up_epoch=args.warm_up_epoch,
                                        half_cos_period=args.half_cos_period,
                                        lr_milestone=args.lr_milestone,
                                        gamma=args.gamma,
                                        stepsize=args.stepsize)

    scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer,
                                                  lr_lambda=current_schedule)
    '''------Please refer to the args.xxx for details of hyperparams------'''
    # embed()
    start_epoch = args.start_epoch

    if args.resume:
        print("Loading checkpoint from '{}'".format(args.resume))
        checkpoint = torch.load(args.resume)
        model.load_state_dict(checkpoint['state_dict'])
        start_epoch = checkpoint['epoch']

    if use_gpu:
        model = nn.DataParallel(model).cuda()

    if args.evaluate:
        print("Evaluate only")
        test(model, queryloader, galleryloader, use_gpu)
        return

    start_time = time.time()
    train_time = 0
    best_rank1 = -np.inf
    best_epoch = 0
    print("==> Start training")

    for epoch in range(start_epoch, args.max_epoch):
        start_train_time = time.time()
        train(epoch, model, criterion_xent, criterion_ring, optimizer,
              trainloader, use_gpu)
        train_time += round(time.time() - start_train_time)

        if args.schedule: scheduler.step()

        if (epoch + 1) > args.start_eval and args.eval_step > 0 and (
                epoch + 1) % args.eval_step == 0 or (epoch +
                                                     1) == args.max_epoch:
            print("==> Test")
            rank1 = test(model, queryloader, galleryloader, use_gpu)
            is_best = rank1 > best_rank1
            if is_best:
                best_rank1 = rank1
                best_epoch = epoch + 1

            if use_gpu:
                state_dict = model.module.state_dict()
            else:
                state_dict = model.state_dict()
            save_checkpoint(
                {
                    'state_dict': state_dict,
                    'rank1': rank1,
                    'epoch': epoch,
                }, is_best,
                osp.join(args.save_dir,
                         'checkpoint_ep' + str(epoch + 1) + '.pth.tar'))

    print("==> Best Rank-1 {:.1%}, achieved at epoch {}".format(
        best_rank1, best_epoch))

    elapsed = round(time.time() - start_time)
    elapsed = str(datetime.timedelta(seconds=elapsed))
    train_time = str(datetime.timedelta(seconds=train_time))
    print(
        "Finished. Total elapsed time (h:m:s): {}. Training time (h:m:s): {}.".
        format(elapsed, train_time))
def map_permutation_test(args):
    # Set up logger
    logger = getLogger(args.verbosity)

    # Load required modules
    from sklearn.model_selection import LeaveOneOut, GridSearchCV, cross_val_predict
    from metrics import compute_metrics

    # Load the input data
    X = pd.read_csv(args.feature_file, index_col=0, sep='\t')
    y = pd.read_csv(args.outcome_file, index_col=0, sep='\t')
    feature_classes = pd.read_csv(args.feature_class_file, index_col=0, sep='\t')

    # Align the features and outcomes
    patients = X.index
    X = X.reindex(index = patients)
    y = y.reindex(index = patients)
    outcome_name = y.columns[0]

    # Restrict to the training columns
    selected_feature_classes = set(map(str.capitalize, set(FEATURE_CLASSES) - set(args.excluded_feature_classes)))
    training_cols = feature_classes['Class'].isin(selected_feature_classes).index.tolist()

    ############################################################################
    # RUN PERMUTATION TEST
    ############################################################################
    #Initialize model
    pipeline, gscv = init_model(args.model, args.n_jobs,
        args.estimator_random_seed, args.max_iter, args.tol)

    # Permute the outcomes
    np.random.seed(args.permutation_random_seed)
    y[outcome_name] = np.random.permutation(y[outcome_name])

    # Convert dataframes to matrices to avoid dataframe splitting error
    outer_cv = LeaveOneOut()
    preds = pd.Series(cross_val_predict(estimator = gscv,
                                       X=X.loc[:,training_cols],
                                        y=y[outcome_name], cv=outer_cv,
                                        n_jobs = args.n_jobs,
                                        verbose=61 if args.verbosity > 0 else 0),
                     index = patients)

    # Evalue results
    sub_y = y.loc[patients][outcome_name].values
    sub_preds = preds.loc[patients].values
    metric_vals, var_explained = compute_metrics(sub_y, sub_preds)

    ############################################################################
    # OUTPUT TO FILE
    ############################################################################
    with open(args.output_file, 'w') as OUT:
        output = {
            "var_explained": var_explained.tolist(),
            "true": sub_y.tolist(),
            "preds": "sub_preds",
            "params": vars(args),
            "training_features": training_cols
        }
        output.update(metric_vals.items())
        json.dump( output, OUT )
Exemple #18
0
def init_app(app):
    from models import init_model
    init_model(app)
def main():
    runId = datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S')
    cfg.OUTPUT_DIR = os.path.join(cfg.OUTPUT_DIR, runId)
    if not os.path.exists(cfg.OUTPUT_DIR):
        os.mkdir(cfg.OUTPUT_DIR)
    print(cfg.OUTPUT_DIR)
    torch.manual_seed(cfg.RANDOM_SEED)
    random.seed(cfg.RANDOM_SEED)
    np.random.seed(cfg.RANDOM_SEED)
    os.environ['CUDA_VISIBLE_DEVICES'] = cfg.MODEL.DEVICE_ID

    use_gpu = torch.cuda.is_available() and cfg.MODEL.DEVICE == "cuda"
    if not cfg.EVALUATE_ONLY:
        sys.stdout = Logger(osp.join(cfg.OUTPUT_DIR, 'log_train.txt'))
    else:
        sys.stdout = Logger(osp.join(cfg.OUTPUT_DIR, 'log_test.txt'))

    print("==========\nConfigs:{}\n==========".format(cfg))

    if use_gpu:
        print("Currently using GPU {}".format(cfg.MODEL.DEVICE_ID))
        cudnn.benchmark = True
        torch.cuda.manual_seed_all(cfg.RANDOM_SEED)
    else:
        print("Currently using CPU (GPU is highly recommended)")

    print("Initializing dataset {}".format(cfg.DATASETS.NAME))

    dataset = data_manager.init_dataset(root=cfg.DATASETS.ROOT_DIR,
                                        name=cfg.DATASETS.NAME)
    if cfg.ATTR_RECOG_ON:
        cfg.DATASETS.ATTR_LENS = dataset.attr_lens
    else:
        cfg.DATASETS.ATTR_LENS = []

    cfg.DATASETS.ATTR_COLUMNS = dataset.columns
    print("Initializing model: {}".format(cfg.MODEL.NAME))

    if cfg.MODEL.ARCH == 'video_baseline':
        torch.backends.cudnn.benchmark = False
        model = models.init_model(name=cfg.MODEL.ARCH,
                                  num_classes=dataset.num_train_pids,
                                  pretrain_choice=cfg.MODEL.PRETRAIN_CHOICE,
                                  last_stride=cfg.MODEL.LAST_STRIDE,
                                  neck=cfg.MODEL.NECK,
                                  model_name=cfg.MODEL.NAME,
                                  neck_feat=cfg.TEST.NECK_FEAT,
                                  model_path=cfg.MODEL.PRETRAIN_PATH,
                                  fusion_method=cfg.MODEL.FUSION_METHOD,
                                  attr_lens=cfg.DATASETS.ATTR_LENS,
                                  attr_loss=cfg.DATASETS.ATTRIBUTE_LOSS)

    print("Model size: {:.5f}M".format(
        sum(p.numel() for p in model.parameters()) / 1000000.0))

    transform_train = T.Compose([
        T.Resize(cfg.INPUT.SIZE_TRAIN),
        T.RandomHorizontalFlip(p=cfg.INPUT.PROB),
        T.Pad(cfg.INPUT.PADDING),
        T.RandomCrop(cfg.INPUT.SIZE_TRAIN),
        T.ToTensor(),
        T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
        T.RandomErasing(probability=cfg.INPUT.RE_PROB,
                        mean=cfg.INPUT.PIXEL_MEAN)
    ])
    transform_test = T.Compose([
        T.Resize(cfg.INPUT.SIZE_TEST),
        T.ToTensor(),
        T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
    ])

    # pin_memory = True if use_gpu else False
    pin_memory = False

    cfg.DATALOADER.NUM_WORKERS = 0

    cfg.DATASETS.ATTR_COLUMNS = dataset.columns

    trainloader = DataLoader(VideoDataset(
        dataset.train,
        seq_len=cfg.DATASETS.SEQ_LEN,
        sample=cfg.DATASETS.TRAIN_SAMPLE_METHOD,
        transform=transform_train,
        attr_loss=cfg.DATASETS.ATTRIBUTE_LOSS,
        attr_lens=cfg.DATASETS.ATTR_LENS,
        dataset_name=cfg.DATASETS.NAME),
                             sampler=RandomIdentitySampler(
                                 dataset.train,
                                 num_instances=cfg.DATALOADER.NUM_INSTANCE),
                             batch_size=cfg.SOLVER.SEQS_PER_BATCH,
                             num_workers=cfg.DATALOADER.NUM_WORKERS,
                             pin_memory=pin_memory,
                             drop_last=True)

    queryloader = DataLoader(VideoDataset(
        dataset.query,
        seq_len=cfg.DATASETS.SEQ_LEN,
        sample=cfg.DATASETS.TEST_SAMPLE_METHOD,
        transform=transform_test,
        max_seq_len=cfg.DATASETS.TEST_MAX_SEQ_NUM,
        dataset_name=cfg.DATASETS.NAME,
        attr_lens=cfg.DATASETS.ATTR_LENS,
        attr_loss=cfg.DATASETS.ATTRIBUTE_LOSS),
                             batch_size=cfg.TEST.SEQS_PER_BATCH,
                             shuffle=False,
                             num_workers=cfg.DATALOADER.NUM_WORKERS,
                             pin_memory=pin_memory,
                             drop_last=False)

    galleryloader = DataLoader(
        VideoDataset(dataset.gallery,
                     seq_len=cfg.DATASETS.SEQ_LEN,
                     sample=cfg.DATASETS.TEST_SAMPLE_METHOD,
                     transform=transform_test,
                     max_seq_len=cfg.DATASETS.TEST_MAX_SEQ_NUM,
                     dataset_name=cfg.DATASETS.NAME,
                     attr_lens=cfg.DATASETS.ATTR_LENS,
                     attr_loss=cfg.DATASETS.ATTRIBUTE_LOSS),
        batch_size=cfg.TEST.SEQS_PER_BATCH,
        shuffle=False,
        num_workers=cfg.DATALOADER.NUM_WORKERS,
        pin_memory=pin_memory,
        drop_last=False,
    )

    if cfg.MODEL.SYN_BN:

        model = apex.parallel.convert_syncbn_model(model)

    optimizer = make_optimizer(cfg, model)

    if cfg.SOLVER.FP_16:
        model, optimizer = apex.amp.initialize(model.cuda(),
                                               optimizer,
                                               opt_level='O1')

    if use_gpu:
        model = nn.DataParallel(model)
        model.cuda()

    start_time = time.time()
    xent = CrossEntropyLabelSmooth(num_classes=dataset.num_train_pids)
    if cfg.DISTANCE == "cosine":
        tent = CosineTripletLoss(cfg.SOLVER.MARGIN)
    elif cfg.DISTANCE == "euclid":
        tent = TripletLoss(cfg.SOLVER.MARGIN)

    if cfg.DATASETS.ATTRIBUTE_LOSS == "mce":
        attr_criter = nn.CrossEntropyLoss()
    elif cfg.DATASETS.ATTRIBUTE_LOSS == "bce":
        attr_criter = nn.BCEWithLogitsLoss()

    tlaw = TripletLossAttrWeightes(dis_type=cfg.DISTANCE)

    scheduler = WarmupMultiStepLR(optimizer, cfg.SOLVER.STEPS,
                                  cfg.SOLVER.GAMMA, cfg.SOLVER.WARMUP_FACTOR,
                                  cfg.SOLVER.WARMUP_ITERS,
                                  cfg.SOLVER.WARMUP_METHOD)

    ema = None
    no_rise = 0
    metrics = test(model, queryloader, galleryloader,
                   cfg.TEST.TEMPORAL_POOL_METHOD, use_gpu)
    # return
    best_rank1 = 0
    start_epoch = 0
    for epoch in range(start_epoch, cfg.SOLVER.MAX_EPOCHS):
        # if no_rise == 10:
        #     break
        scheduler.step()
        print("noriase:", no_rise)
        print("==> Epoch {}/{}".format(epoch + 1, cfg.SOLVER.MAX_EPOCHS))
        print("current lr:", scheduler.get_lr()[0])

        train(model,
              trainloader,
              xent,
              tent,
              attr_criter,
              optimizer,
              use_gpu,
              tlaw=tlaw)
        if cfg.SOLVER.EVAL_PERIOD > 0 and (
            (epoch + 1) % cfg.SOLVER.EVAL_PERIOD == 0 or
            (epoch + 1) == cfg.SOLVER.MAX_EPOCHS):
            print("==> Test")

            metrics = test(model, queryloader, galleryloader,
                           cfg.TEST.TEMPORAL_POOL_METHOD, use_gpu)
            rank1 = metrics[0]
            if rank1 > best_rank1:
                best_rank1 = rank1
                no_rise = 0
            else:
                no_rise += 1
                continue

            if use_gpu:
                state_dict = model.module.state_dict()
            else:
                state_dict = model.state_dict()
            torch.save(
                state_dict,
                osp.join(
                    cfg.OUTPUT_DIR, "rank1_" + str(rank1) + '_checkpoint_ep' +
                    str(epoch + 1) + '.pth'))

    elapsed = round(time.time() - start_time)
    elapsed = str(datetime.timedelta(seconds=elapsed))
    print("Finished. Total elapsed time (h:m:s): {}".format(elapsed))
Exemple #20
0
def main():
    global args, best_prec1, use_gpu
    args = parser.parse_args()

    use_gpu = torch.cuda.is_available()
    num_classes = 79
    
    # define state params
    state = {'batch_size': args.batch_size, 'image_size': args.image_size, 'max_epochs': args.epochs,
             'evaluate': args.evaluate, 'resume': args.resume, 'num_classes':num_classes, 'load': args.load, 'test': args.test}
    state['difficult_examples'] = True
    state['save_model_path'] = args.checkpoint
    state['workers'] = args.workers
    state['epoch_step'] = args.epoch_step
    state['lr'] = args.lr
    state['device_ids'] = args.device_ids
    if args.evaluate:
        state['evaluate'] = True
    if args.test:
        state['test'] = True
    
    if not args.test:
        #TODO: Make annotation paths more general
        train_dataset = DatasetLoader(args.data, img_set='train', annotation=os.path.join('/srv/data1/ashishsingh/Half_and_Half_Data/I2L/annotation', 'antisymm_multilabel_nofreq_trainset_annotation.json'))

        if args.val_hnh:
            val_dataset = DatasetLoader_HNH(args.data, img_set='val', annotation=os.path.join('/srv/data1/ashishsingh/Half_and_Half_Data/I2L/annotation', 'i2l_valset_annotation.json'))
        else:
            val_dataset = DatasetLoader(args.data, img_set='val_coco', annotation=os.path.join('/srv/data1/ashishsingh/Half_and_Half_Data', 'valset_complete_metadata.json'))
            
        print("Initializing model: {}".format(args.arch))
        if args.pretrained:
            model = models.init_model(name=args.arch, num_classes=num_classes, pretrained = 'imagenet', use_gpu=use_gpu)
        else:
            model = models.init_model(name=args.arch, num_classes=num_classes, pretrained = None, use_gpu=use_gpu)
        print("Model size: {:.3f} M".format(count_num_param(model)))
            
        # define loss function (criterion)
        #criterion = nn.MultiLabelSoftMarginLoss()
        criterion = MultiLabelSoftmaxLoss()
        if args.val_hnh or args.test:
            criterion_val = nn.CrossEntropyLoss()
        else:
            criterion_val = nn.MultiLabelSoftMarginLoss()

        # define optimizer
        optimizer = torch.optim.SGD(model.parameters(),
                                    lr=args.lr,
                                    momentum=args.momentum,
                                    weight_decay=args.weight_decay)

        #Validate using test-like objective
        if args.val_hnh:
            engine = SymmetricMultiLabelHNHEngine(state)
        else:
            engine = SymmetricMultiLabelMAPEngine(state)

        engine.learning(model, criterion, criterion_val, train_dataset, val_dataset, optimizer)

        
    else:
        test_dataset = DatasetLoader_HNH(args.data, img_set='test_cleaned', annotation=os.path.join('/srv/data1/ashishsingh/Half_and_Half_Data/I2L/annotation', 'i2l_testset_annotation.json'))
        
        print("Initializing model: {}".format(args.arch))
        model = models.init_model(name=args.arch, num_classes=num_classes, pretrained = None, use_gpu=use_gpu)
        criterion_test = nn.CrossEntropyLoss()
        engine = SymmetricMultiLabelHNHEngine(state)
        engine.test(model, criterion_test, test_dataset)
def main():
    global args
    args = parser.parse_args()

    # Set the GPU device IDs
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpuid
    cudnn.benchmark = True

    # Create folder to save prediction images
    save_root = args.dout
    if not osp.isdir(save_root):
        os.makedirs(save_root)

    # Initialize model and display total parameters
    model = models.init_model(name='dfusenet')
    print("Total parameters: {:.5f}M".format(
        sum(p.numel() for p in model.parameters()) / 1000000.0))

    # Load pre-trained weights
    if os.path.isfile(args.model):
        print("Loading pre-trained weights '{}'".format(args.model))
        checkpoint = torch.load(args.model)
        model.load_state_dict(checkpoint['state_dict'])
    else:
        print(
            "No model found, please check location and try again '{}'".format(
                args.resume))
        return

    model = torch.nn.DataParallel(model).cuda()
    tensor_to_pil = T.ToPILImage()
    image_folder = sorted(glob.glob(args.rgbin + '/*.png'))
    laser_folder = sorted(glob.glob(args.din + '/*.png'))
    model.eval()

    print("Beginning evaluation..")

    with torch.no_grad():
        for img_idx in range(0, len(laser_folder)):

            # Iterate through input folder contents
            laser_path = laser_folder[img_idx]
            left_path = image_folder[img_idx]
            print("Currently processing the following images..")
            print("RGB Image: {}".format(left_path))
            print("D   Image: {}".format(laser_path))

            # Load and pre-process input lidar data
            laser_pil = Image.open(laser_path)
            laser = in_depth_transform(laser_pil)

            # Load and pre-process input RGB data
            left_pil = Image.open(left_path)
            left = color_transform(left_pil)

            # Convert RGB and lidar data to Tensor
            left = TF.to_tensor(left).float()
            laser = TF.to_tensor(laser).float()
            laser = torch.unsqueeze(laser, 0).cuda()
            left = torch.unsqueeze(left, 0).cuda()

            # We stack the input and rgb tensors as one tensor for simplicity
            input_stack = torch.cat((left, laser), dim=1)

            # Perform forward pass through the network
            output = model(input_stack)

            # Rescale data back into original KITTI format
            output = output * 256.
            laser = laser * 256.

            output = output[0].cpu()
            pil_img = tensor_to_pil(output.int())
            filename = laser_folder[img_idx].split('/')[-1]
            pil_img.save(save_root + filename)
            print('Finished processing: {}'.format(filename))
Exemple #22
0
def main():
    # 是否使用GPU和是否节省显存
    use_gpu = torch.cuda.is_available()
    if args.use_cpu:
        use_gpu = False
    pin_memory = True if use_gpu else False

    # Log文件的输出
    if not args.evaluate:
        sys.stdout = Logger(osp.join(args.save_dir, 'log_train.txt'))
    else:
        sys.stdout = Logger(osp.join(args.save_dir, 'log_test.txt'))
    print("============\nArgs:{}\n=============".format(args))

    # GPU调用
    if use_gpu:
        print("Currently using GPU {}".format(args.gpu_devices))
        os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_devices
        cudnn.benchmark = True  # 表示使用cudnn
        torch.cuda.manual_seed_all(args.seed)
    else:
        print("Currently using CPU !")

    # 初始化dataset
    dataset = data_manager.Market1501(root=args.root)

    # dataloader(train query gallery) 和 增强
    transform_train = T.Compose([
        T.Random2DTranslation(args.height, args.width),
        T.RandomHorizontalFlip(p=0.5),
        T.ToTensor(),
        T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
    ])

    transform_test = T.Compose([
        T.Resize(args.height, args.width),
        T.ToTensor(),
        T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
    ])

    trainloader = DataLoader(
        ImageDataset(dataset.train, transform=transform_train),
        sampler=RandomIdentitySampler(dataset.train,
                                      num_instance=args.num_instances),
        batch_size=args.train_batch,
        num_workers=args.workers,
        pin_memory=pin_memory,
        drop_last=
        True  # 训练时会存在epoch % batchsize != 0 的情况,那么余数的图片是否还要训练?drop_last= True就是舍去这些图片
    )

    queryloader = DataLoader(ImageDataset(dataset.query,
                                          transform=transform_test),
                             batch_size=args.train_batch,
                             num_workers=args.workers,
                             shuffle=False,
                             pin_memory=pin_memory)

    galleryloader = DataLoader(ImageDataset(dataset.gallery,
                                            transform=transform_test),
                               batch_size=args.train_batch,
                               num_workers=args.workers,
                               shuffle=False,
                               pin_memory=pin_memory)

    # 加载模型
    print("Initializing model: {}".format(args.arch))
    model = models.init_model(name=args.arch,
                              num_classes=dataset.num_train_pids,
                              loss={'softmax', 'metric'})
    print("Model size: {:.5f}M".format(
        sum(p.numel() for p in model.parameters()) / 1000000.0))

    # 损失和优化器
    criterion_class = nn.CrossEntropyLoss()
    criterion_metric = TripletLoss(margin=args.margin)
    # optimizer = torch.optim.adam()
    # 只更新其中某两层(先运行下行语句看看要更新哪几层)
    # print(*list(model.children()))
    # optimizer = init_optim(args.optim, model.parameters(nn.Sequential([
    #     *list(model.children())[:-2]
    # ])))
    optimizer = init_optim(args.optim, model.parameters(), args.lr,
                           args.weight_decay)

    if args.stepsize > 0:
        scheduler = lr_scheduler.StepLR(optimizer,
                                        step_size=args.stepsize,
                                        gamma=args.gamma)

    start_epoch = args.start_epoch

    # 是否要恢复模型
    if args.resume:
        print("Loading checkpoint from {}".format(args.resume))
        checkpoint = torch.load(args.resume)
        model.load_state_dict(checkpoint['state_dict'])
        start_epoch = checkpoint['epoch']

    # 并行
    if use_gpu:
        model = nn.DataParallel(model).cuda()

    # 如果只是想测试
    if args.evaluate:
        print("Evaluate only")
        test(model, queryloader, galleryloader, use_gpu)
        return 0

    start_time = time.time()
    train_time = 0

    # 训练
    print("Start Traing!")
    for epoch in range(start_epoch, args.max_epoch):
        start_train_time = time.time()
        train(epoch, model, criterion_class, criterion_metric, optimizer,
              trainloader, use_gpu)
        train_time += round(time.time() - start_train_time)

        # 测试以及存模型
        # step()了才会衰减
        if args.stepsize > 0:
            scheduler.step()

        if (epoch + 1) > args.start_eval and args.eval_step > 0 and (
                epoch + 1) % args.eval_step == 0 or (epoch +
                                                     1) == args.max_epoch:
            print("==> Test")
            rank1 = test(model, queryloader, galleryloader, use_gpu)
            is_best = rank1 > best_rank1
            if is_best:
                best_rank1 = rank1
                best_epoch = epoch + 1

            if use_gpu:
                state_dict = model.module.state_dict()
            else:
                state_dict = model.state_dict()
            save_checkpoint(
                {
                    'state_dict': state_dict,
                    'rank1': rank1,
                    'epoch': epoch,
                }, is_best,
                osp.join(args.save_dir,
                         'checkpoint_ep' + str(epoch + 1) + '.pth.tar'))

    print("==> Best Rank-1 {:.1%}, achieved at epoch {}".format(
        best_rank1, best_epoch))

    elapsed = round(time.time() - start_time)
    elapsed = str(datetime.timedelta(seconds=elapsed))
    train_time = str(datetime.timedelta(seconds=train_time))
    print(
        "Finished. Total elapsed time (h:m:s): {}. Training time (h:m:s): {}.".
        format(elapsed, train_time))
def main():
    torch.manual_seed(args.seed)
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_devices
    use_gpu = torch.cuda.is_available()
    if args.use_cpu: use_gpu = False

    # set a learning rate
    if args.lr_factor == -1:
        args.lr_factor = random()
    args.lr = args.lr_factor * 10**-args.lr_base
    args.lr *= len(args.gpu_devices.split(','))
    print(f"Choose learning rate {args.lr}")

    sys.stdout = Logger(osp.join(args.save_dir, 'log_train.txt'), mode='a')
    print("==========\nArgs:{}\n==========".format(args))

    #assert torch.distributed.is_available()
    #print("Initializing DDP by nccl-tcp({}) rank({}) world_size({})".format(args.init_method, args.rank, args.world_size))
    #dist.init_process_group(backend='nccl', init_method=args.init_method, rank=args.rank, world_size=args.world_size)

    if use_gpu:
        print("Currently using GPU {}".format(args.gpu_devices))
        torch.cuda.manual_seed_all(args.seed)
    else:
        print("Currently using CPU (GPU is highly recommended)")

    print("Initializing dataset {}".format(args.dataset))
    dataset = data_manager.init_dataset(name=args.dataset, root=args.root)

    # Data augmentation
    spatial_transform_train = [
        ST.Scale((args.height, args.width), interpolation=3),
        ST.RandomHorizontalFlip(),
        ST.ToTensor(),
        ST.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
        ST.RandomErasing(probability=0.5, mean=[0.485, 0.456, 0.406])
    ]
    spatial_transform_train = ST.Compose(spatial_transform_train)

    temporal_transform_train = TT.TemporalRandomCrop(size=args.seq_len,
                                                     stride=args.sample_stride)
    #temporal_transform_train = TT.TemporalRandomCropPick(size=args.seq_len, stride=args.sample_stride)

    spatial_transform_test = ST.Compose([
        ST.Scale((args.height, args.width), interpolation=3),
        ST.ToTensor(),
        ST.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ])
    temporal_transform_test = TT.TemporalBeginCrop(size=args.test_frames)

    pin_memory = True if use_gpu else False

    dataset_train = dataset.train
    if args.dataset == 'duke':
        dataset_train = dataset.train_dense
        print('process duke dataset')

    #sampler = RandomIdentitySampler(dataset_train, num_instances=args.num_instances)
    if args.dataset == 'lsvid':
        sampler = RandomIdentityCameraSampler(dataset_train,
                                              num_instances=args.num_instances,
                                              num_cam=dataset.num_camids)
    elif args.dataset == 'mars':
        sampler = RandomIdentityCameraSampler(dataset_train,
                                              num_instances=args.num_instances,
                                              num_cam=dataset.num_camids)
    trainloader = DataLoader(
        VideoDataset(dataset_train,
                     spatial_transform=spatial_transform_train,
                     temporal_transform=temporal_transform_train),
        sampler=sampler,
        batch_size=args.train_batch,
        num_workers=args.workers,
        pin_memory=pin_memory,
        drop_last=True,
    )
    '''
    for batch_idx, (vids, pids, camids, img_paths) in enumerate(trainloader):
        print(batch_idx, pids, camids, img_paths)
        break
    return
    '''
    dataset_query = dataset.query
    dataset_gallery = dataset.gallery
    if args.dataset == 'lsvid':
        dataset_query = dataset.val_query
        dataset_gallery = dataset.val_gallery
        print('process lsvid dataset')

    queryloader = DataLoader(VideoDataset(
        dataset_query,
        spatial_transform=spatial_transform_test,
        temporal_transform=temporal_transform_test),
                             batch_size=args.test_batch,
                             shuffle=False,
                             num_workers=args.workers,
                             pin_memory=pin_memory,
                             drop_last=False)

    galleryloader = DataLoader(VideoDataset(
        dataset_gallery,
        spatial_transform=spatial_transform_test,
        temporal_transform=temporal_transform_test),
                               batch_size=args.test_batch,
                               shuffle=False,
                               num_workers=args.workers,
                               pin_memory=pin_memory,
                               drop_last=False)

    print("Initializing model: {}".format(args.arch))
    model = models.init_model(
        name=args.arch,
        use_gpu=use_gpu,
        num_classes=[dataset.num_train_pids, dataset.num_camids],
        loss={'xent', 'htri'},
        vis=True)
    #print(model)
    if args.resume:
        print("Loading checkpoint from '{}'".format(args.resume))
        checkpoint = torch.load(args.resume)
        model.load_state_dict(checkpoint['state_dict'])

    criterion_xent = nn.CrossEntropyLoss()
    criterion_htri = TripletLoss(margin=args.margin,
                                 distance=args.distance,
                                 use_gpu=use_gpu)
    criterion_htri_c = TripletInterCamLoss(margin=args.margin,
                                           distance=args.distance,
                                           use_gpu=use_gpu)
    criterion_attn = AttentionLoss()
    #criterion_htri_c = TripletWeightedInterCamLoss(margin=args.margin, distance=args.distance, use_gpu=use_gpu, alpha=args.cam_alpha)

    optimizer = torch.optim.Adam(model.parameters(),
                                 lr=args.lr,
                                 weight_decay=args.weight_decay)

    #scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=args.stepsize, gamma=args.gamma)
    scheduler = WarmupMultiStepLR(optimizer,
                                  milestones=args.stepsize,
                                  gamma=args.gamma,
                                  warmup_factor=1.0 / 10,
                                  warmup_iters=10,
                                  warmup_method="linear")
    start_epoch = args.start_epoch

    if use_gpu:
        model = nn.DataParallel(model).cuda()
        #model = model.cuda()
        #model = nn.parallel.DistributedDataParallel(model)

    start_time = time.time()
    train_time = 0
    best_rank1 = -np.inf
    best_epoch = 0
    print("==> Start training")

    for epoch in range(start_epoch, args.max_epoch):
        #print("Set sampler seed to {}".format(args.seed*epoch))
        #sampler.set_seed(args.seed*epoch)
        if args.resume and epoch + 1 <= args.resume_epoch:
            print(f"Skip epoch {epoch+1}")
            scheduler.step()
            continue

        start_train_time = time.time()
        train(epoch, model, criterion_xent, criterion_htri, criterion_htri_c,
              criterion_attn, optimizer, trainloader, use_gpu)
        train_time += round(time.time() - start_train_time)

        scheduler.step()

        if (epoch + 1) >= args.start_eval and (
                epoch + 1) % args.eval_step == 0 or epoch == 0:
            print("==> Test")
            with torch.no_grad():
                rank1 = test(model, queryloader, galleryloader, use_gpu)
            is_best = rank1 > best_rank1
            if is_best:
                best_rank1 = rank1
                best_epoch = epoch + 1

            if use_gpu:
                state_dict = model.module.state_dict()
            else:
                state_dict = model.state_dict()
            save_checkpoint(
                {
                    'state_dict': state_dict,
                    'rank1': rank1,
                    'epoch': epoch,
                }, is_best,
                osp.join(args.save_dir,
                         'checkpoint_ep' + str(epoch + 1) + '.pth.tar'))

    print("==> Best Rank-1 {:.1%}, achieved at epoch {}".format(
        best_rank1, best_epoch))

    elapsed = round(time.time() - start_time)
    elapsed = str(datetime.timedelta(seconds=elapsed))
    train_time = str(datetime.timedelta(seconds=train_time))
    print(
        "Finished. Total elapsed time (h:m:s): {}. Training time (h:m:s): {}.".
        format(elapsed, train_time))
Exemple #24
0
def main():
    torch.manual_seed(args.seed)
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_devices
    use_gpu = torch.cuda.is_available()

    if not args.evaluate:
        sys.stdout = Logger(osp.join(args.save_dir, 'log_train.txt'))
    else:
        sys.stdout = Logger(osp.join(args.save_dir, 'log_test.txt'))
    print("==========\nArgs:{}\n==========".format(args))

    if use_gpu:
        print("Currently using GPU {}".format(args.gpu_devices))
        torch.cuda.manual_seed_all(args.seed)
    else:
        print("Currently using CPU (GPU is highly recommended)")

    print("Initializing dataset {}".format(args.dataset))
    dataset = data_manager.init_dataset(name=args.dataset, root=args.root)

    # Data augmentation
    spatial_transform_train = ST.Compose([
        ST.Scale((args.height, args.width), interpolation=3),
        ST.RandomHorizontalFlip(),
        ST.ToTensor(),
        ST.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ])
    temporal_transform_train = TT.TemporalRandomCrop(size=args.seq_len,
                                                     stride=args.sample_stride)

    spatial_transform_test = ST.Compose([
        ST.Scale((args.height, args.width), interpolation=3),
        ST.ToTensor(),
        ST.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ])
    temporal_transform_test = TT.TemporalBeginCrop()

    transform_test_img = T.Compose([
        T.Resize((args.height, args.width), interpolation=3),
        T.ToTensor(),
        T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ])

    pin_memory = True if use_gpu else False

    if args.dataset == 'dukevid':
        trainloader = DataLoader(
            VideoDataset(dataset.train_dense,
                         spatial_transform=spatial_transform_train,
                         temporal_transform=temporal_transform_train),
            sampler=RandomIdentitySampler(dataset.train_dense,
                                          num_instances=args.num_instances),
            batch_size=args.train_batch,
            num_workers=args.workers,
            pin_memory=pin_memory,
            drop_last=True,
        )
    else:
        trainloader = DataLoader(
            VideoDataset(dataset.train,
                         spatial_transform=spatial_transform_train,
                         temporal_transform=temporal_transform_train),
            sampler=RandomIdentitySampler(dataset.train,
                                          num_instances=args.num_instances),
            batch_size=args.train_batch,
            num_workers=args.workers,
            pin_memory=pin_memory,
            drop_last=True,
        )

    queryloader = DataLoader(VideoDataset(
        dataset.query,
        spatial_transform=spatial_transform_test,
        temporal_transform=temporal_transform_test),
                             batch_size=args.test_batch,
                             shuffle=False,
                             num_workers=0,
                             pin_memory=pin_memory,
                             drop_last=False)

    galleryloader = DataLoader(VideoDataset(
        dataset.gallery,
        spatial_transform=spatial_transform_test,
        temporal_transform=temporal_transform_test),
                               batch_size=args.test_batch,
                               shuffle=False,
                               num_workers=0,
                               pin_memory=pin_memory,
                               drop_last=False)

    queryimgloader = DataLoader(ImageDataset(dataset.query_img,
                                             transform=transform_test_img),
                                batch_size=args.img_test_batch,
                                shuffle=False,
                                num_workers=args.workers,
                                pin_memory=pin_memory,
                                drop_last=False)

    galleryimgloader = DataLoader(ImageDataset(dataset.gallery_img,
                                               transform=transform_test_img),
                                  batch_size=args.img_test_batch,
                                  shuffle=False,
                                  num_workers=args.workers,
                                  pin_memory=pin_memory,
                                  drop_last=False)

    print("Initializing model: {} and {}".format(args.vid_arch, args.img_arch))
    vid_model = models.init_model(name=args.vid_arch)
    img_model = models.init_model(name=args.img_arch)
    classifier = models.init_model(name='classifier',
                                   num_classes=dataset.num_train_pids)
    print("Video model size: {:.5f}M".format(
        sum(p.numel() for p in vid_model.parameters()) / 1000000.0))
    print("Image model size: {:.5f}M".format(
        sum(p.numel() for p in img_model.parameters()) / 1000000.0))

    criterion = nn.CrossEntropyLoss()
    criterion_tkp_f = FeatureBasedTKP(bp_to_vid=args.bp_to_vid)
    criterion_tkp_d = SimilarityBasedTKP(distance='euclidean',
                                         bp_to_vid=args.bp_to_vid)
    criterion_i2v = HeterogeneousTripletLoss(margin=0.3, distance='euclidean')
    optimizer = torch.optim.Adam([{
        'params': vid_model.parameters(),
        'lr': args.lr
    }, {
        'params': img_model.parameters(),
        'lr': args.lr
    }, {
        'params': classifier.parameters(),
        'lr': args.lr
    }],
                                 weight_decay=args.weight_decay)
    scheduler = lr_scheduler.MultiStepLR(optimizer,
                                         milestones=args.stepsize,
                                         gamma=args.gamma)
    start_epoch = args.start_epoch

    if args.resume:
        print("Loading checkpoint from '{}'".format(args.resume))
        checkpoint = torch.load(args.resume)
        vid_model.load_state_dict(checkpoint['vid_model_state_dict'])
        img_model.load_state_dict(checkpoint['img_model_state_dict'])
        classifier.load_state_dict(checkpoint['classifier_state_dict'])
        start_epoch = checkpoint['epoch']

    if use_gpu:
        vid_model = vid_model.cuda()
        img_model = img_model.cuda()
        classifier = classifier.cuda()

    if args.evaluate:
        print("Evaluate only")
        with torch.no_grad():
            test(vid_model, img_model, queryloader, galleryloader,
                 queryimgloader, galleryimgloader, use_gpu)
        return

    start_time = time.time()
    train_time = 0
    best_rank1 = -np.inf
    best_epoch = 0
    print("==> Start training")

    for epoch in range(start_epoch, args.max_epoch):
        scheduler.step()
        print('1')
        start_train_time = time.time()
        print('2')
        train(epoch, vid_model, img_model, classifier, criterion,
              criterion_tkp_f, criterion_tkp_d, criterion_i2v, optimizer,
              trainloader, use_gpu)
        #torch.cuda.empty_cache()
        train_time += round(time.time() - start_train_time)

        if (epoch + 1) >= args.start_eval and args.eval_step > 0 and (
                epoch + 1) % args.eval_step == 0 or (epoch +
                                                     1) == args.max_epoch:
            print("==> Test")
            with torch.no_grad():
                rank1 = test(vid_model, img_model, queryloader, galleryloader,
                             queryimgloader, galleryimgloader, use_gpu)
                torch.cuda.empty_cache()
            is_best = rank1 > best_rank1
            if is_best:
                best_rank1 = rank1
                best_epoch = epoch + 1

            vid_model_state_dict = vid_model.state_dict()
            img_model_state_dict = img_model.state_dict()
            classifier_state_dict = classifier.state_dict()

            save_checkpoint(
                {
                    'vid_model_state_dict': vid_model_state_dict,
                    'img_model_state_dict': img_model_state_dict,
                    'classifier_state_dict': classifier_state_dict,
                    'rank1': rank1,
                    'epoch': epoch,
                }, is_best,
                osp.join(args.save_dir,
                         'checkpoint_ep' + str(epoch + 1) + '.pth.tar'))

    print("==> Best Rank-1 {:.1%}, achieved at epoch {}".format(
        best_rank1, best_epoch))

    elapsed = round(time.time() - start_time)
    elapsed = str(datetime.timedelta(seconds=elapsed))
    train_time = str(datetime.timedelta(seconds=train_time))
    print(
        "Finished. Total elapsed time (h:m:s): {}. Training time (h:m:s): {}.".
        format(elapsed, train_time))
Exemple #25
0
def init_app( app):
    from models import init_model
    init_model( app)
Exemple #26
0
from __future__ import print_function, absolute_import

import argparse
import models

parser = argparse.ArgumentParser(
    description='Train image model with cross entropy loss')
# Architecture
parser.add_argument('-a',
                    '--arch',
                    type=str,
                    default='resnet50',
                    choices=models.get_names())

args = parser.parse_args()

if __name__ == '__main__':
    model = models.init_model(name=args.arch)
    print("Model size: {:.5f}M".format(
        sum(p.numel() for p in model.parameters()) / 1000000.0))
Exemple #27
0
    parser.add_argument('--profile')
    parser.add_argument('--render', action="store_false", default=False)
    # runner params
    parser.add_argument('--num_episodes', type=int, default=10000000)
    parser.add_argument('--num_runners', type=int, default=1)
    # MCTS params
    parser.add_argument('--mcts_iters', type=int, default=50)
    parser.add_argument('--mcts_c_puct', type=float, default=1.0)
    # RL params
    parser.add_argument('--discount', type=float, default=0.9)
    parser.add_argument('--temperature', type=float, default=0.4)
    args = parser.parse_args()

    assert args.num_episodes % args.num_runners == 0, "The number of episodes should be divisible by number of runners"
    if LOAD_TRAINED_MODEL: model = load_model(args.model_file)
    else: model = models.init_model()

    # # use spawn method for starting subprocesses
    # ctx = multiprocessing.get_context('spawn')
    #
    # # create fifos and processes for all runners
    # fifo = ctx.Queue()
    # for i in range(args.num_runners):
    #     process = ctx.Process(target=profile_runner if args.profile else train, args=(i, args.num_episodes // args.num_runners, fifo, args, model))
    #     process.start()

    train(args.num_episodes, args, model)

    # # do logging in the main process
    # all_rewards = []
    # all_lengths = []
def main(opt):
    if not osp.exists(save_dir): os.makedirs(save_dir)
    if not osp.exists(vis_dir): os.makedirs(vis_dir)

    use_gpu = torch.cuda.is_available()
    pin_memory = True if use_gpu else False

    if args.mode == 'train':
        sys.stdout = Logger(osp.join(save_dir, 'log_train.txt'))
    else:
        sys.stdout = Logger(osp.join(save_dir, 'log_test.txt'))
    print("==========\nArgs:{}\n==========".format(args))

    if use_gpu:
        print("GPU mode")
        cudnn.benchmark = True
        torch.cuda.manual_seed(args.seed)
    else:
        print("CPU mode")

    ### Setup dataset loader ###
    print("Initializing dataset {}".format(args.dataset))
    dataset = data_manager.init_img_dataset(
        root=args.root,
        name=args.dataset,
        split_id=opt['split_id'],
        cuhk03_labeled=opt['cuhk03_labeled'],
        cuhk03_classic_split=opt['cuhk03_classic_split'])
    if args.ak_type < 0:
        trainloader = DataLoader(
            ImageDataset(dataset.train, transform=opt['transform_train']),
            sampler=RandomIdentitySampler(dataset.train,
                                          num_instances=opt['num_instances']),
            batch_size=args.train_batch,
            num_workers=opt['workers'],
            pin_memory=pin_memory,
            drop_last=True)
    elif args.ak_type > 0:
        trainloader = DataLoader(ImageDataset(
            dataset.train, transform=opt['transform_train']),
                                 sampler=AttrPool(dataset.train,
                                                  args.dataset,
                                                  attr_matrix,
                                                  attr_list,
                                                  sample_num=16),
                                 batch_size=args.train_batch,
                                 num_workers=opt['workers'],
                                 pin_memory=pin_memory,
                                 drop_last=True)
    queryloader = DataLoader(ImageDataset(dataset.query,
                                          transform=opt['transform_test']),
                             batch_size=args.test_batch,
                             shuffle=False,
                             num_workers=opt['workers'],
                             pin_memory=pin_memory,
                             drop_last=False)
    galleryloader = DataLoader(ImageDataset(dataset.gallery,
                                            transform=opt['transform_test']),
                               batch_size=args.test_batch,
                               shuffle=False,
                               num_workers=opt['workers'],
                               pin_memory=pin_memory,
                               drop_last=False)

    ### Prepare criterion ###
    if args.ak_type < 0:
        clf_criterion = adv_CrossEntropyLabelSmooth(
            num_classes=dataset.num_train_pids,
            use_gpu=use_gpu) if args.loss in ['xent', 'xent_htri'
                                              ] else adv_CrossEntropyLoss(
                                                  use_gpu=use_gpu)
    else:
        clf_criterion = nn.MultiLabelSoftMarginLoss()
    metric_criterion = adv_TripletLoss(margin=args.margin,
                                       ak_type=args.ak_type)
    criterionGAN = GANLoss()

    ### Prepare pretrained model ###
    target_net = models.init_model(name=args.targetmodel,
                                   pre_dir=pre_dir,
                                   num_classes=dataset.num_train_pids)
    check_freezen(target_net, need_modified=True, after_modified=False)

    ### Prepare main net ###
    G = Generator(3, 3, args.num_ker,
                  norm=args.normalization).apply(weights_init)
    if args.D == 'PatchGAN':
        D = Pat_Discriminator(input_nc=6,
                              norm=args.normalization).apply(weights_init)
    elif args.D == 'MSGAN':
        D = MS_Discriminator(input_nc=6,
                             norm=args.normalization,
                             temperature=args.temperature,
                             use_gumbel=args.usegumbel).apply(weights_init)
    check_freezen(G, need_modified=True, after_modified=True)
    check_freezen(D, need_modified=True, after_modified=True)
    print("Model size: {:.5f}M".format(
        (sum(g.numel()
             for g in G.parameters()) + sum(d.numel()
                                            for d in D.parameters())) /
        1000000.0))
    # setup optimizer
    optimizer_G = optim.Adam(G.parameters(),
                             lr=args.lr,
                             betas=(args.beta1, 0.999))
    optimizer_D = optim.Adam(D.parameters(),
                             lr=args.lr,
                             betas=(args.beta1, 0.999))

    if use_gpu:
        test_target_net = nn.DataParallel(target_net).cuda(
        ) if not args.targetmodel == 'pcb' else nn.DataParallel(
            PCB_test(target_net)).cuda()
        target_net = nn.DataParallel(target_net).cuda()
        G = nn.DataParallel(G).cuda()
        D = nn.DataParallel(D).cuda()

    if args.mode == 'test':
        epoch = 'test'
        test(G,
             D,
             test_target_net,
             dataset,
             queryloader,
             galleryloader,
             epoch,
             use_gpu,
             is_test=True)
        return 0

    # Ready
    start_time = time.time()
    train_time = 0
    worst_mAP, worst_rank1, worst_rank5, worst_rank10, worst_epoch = np.inf, np.inf, np.inf, np.inf, 0
    best_hit, best_epoch = -np.inf, 0
    print("==> Start training")

    for epoch in range(1, args.epoch + 1):
        start_train_time = time.time()
        train(epoch, G, D, target_net, criterionGAN, clf_criterion,
              metric_criterion, optimizer_G, optimizer_D, trainloader, use_gpu)
        train_time += round(time.time() - start_train_time)

        if epoch % args.eval_freq == 0:
            print("==> Eval at epoch {}".format(epoch))
            if args.ak_type < 0:
                cmc, mAP = test(G,
                                D,
                                test_target_net,
                                dataset,
                                queryloader,
                                galleryloader,
                                epoch,
                                use_gpu,
                                is_test=False)
                is_worst = cmc[0] <= worst_rank1 and cmc[
                    1] <= worst_rank5 and cmc[
                        2] <= worst_rank10 and mAP <= worst_mAP
                if is_worst:
                    worst_mAP, worst_rank1, worst_epoch = mAP, cmc[0], epoch
                print(
                    "==> Worst_epoch is {}, Worst mAP {:.1%}, Worst rank-1 {:.1%}"
                    .format(worst_epoch, worst_mAP, worst_rank1))
                save_checkpoint(
                    G.state_dict(), is_worst, 'G',
                    osp.join(save_dir, 'G_ep' + str(epoch) + '.pth.tar'))
                save_checkpoint(
                    D.state_dict(), is_worst, 'D',
                    osp.join(save_dir, 'D_ep' + str(epoch) + '.pth.tar'))

            else:
                all_hits = test(G,
                                D,
                                target_net,
                                dataset,
                                queryloader,
                                galleryloader,
                                epoch,
                                use_gpu,
                                is_test=False)
                is_best = all_hits[0] >= best_hit
                if is_best:
                    best_hit, best_epoch = all_hits[0], epoch
                print("==> Best_epoch is {}, Best rank-1 {:.1%}".format(
                    best_epoch, best_hit))
                save_checkpoint(
                    G.state_dict(), is_best, 'G',
                    osp.join(save_dir, 'G_ep' + str(epoch) + '.pth.tar'))
                save_checkpoint(
                    D.state_dict(), is_best, 'D',
                    osp.join(save_dir, 'D_ep' + str(epoch) + '.pth.tar'))

    elapsed = round(time.time() - start_time)
    elapsed = str(datetime.timedelta(seconds=elapsed))
    train_time = str(datetime.timedelta(seconds=train_time))
    print(
        "Finished. Total elapsed time (h:m:s): {}. Training time (h:m:s): {}.".
        format(elapsed, train_time))
Exemple #29
0
def main(global_config, **settings):
    """ This function returns a Pyramid WSGI application.
    """
    engine = engine_from_config(settings, 'sqlalchemy.')
    DBSession.configure(bind=engine)
    Base.metadata.bind = engine
    init_model()

    ###Engine Tambahan
    if settings['pbb.url']:
        from models.pbb import (
            PbbDBSession,
            PbbBase
        )
        os.environ["NLS_LANG"] = ".AL32UTF8"
        pbb_engine = engine_from_config(settings, 'pbb.') #, encoding='.AL32UTF8', convert_unicode=True)
        PbbDBSession.configure(bind=pbb_engine)
        PbbBase.metadata.bind = pbb_engine
        pbb_schema = settings['pbb_schema']

    if settings['pospbb.url']:
        from models.pospbb import (
            PosPbbDBSession,
            PosPbbBase,
        )
        pospbb_engine = engine_from_config(settings, 'pospbb.')
        PosPbbDBSession.configure(bind=pospbb_engine)
        PosPbbBase.metadata.bind = pospbb_engine
        pospbb_schema = settings['pospbb_schema']

    session_factory = session_factory_from_settings(settings)
    if 'localization' not in settings:
        settings['localization'] = 'id_ID.UTF-8'
    locale.setlocale(locale.LC_ALL, settings['localization'])        
    if 'timezone' not in settings:
        settings['timezone'] = DefaultTimeZone
    config = Configurator(settings=settings,
                          root_factory='pbbrekon.models.RootFactory',
                          session_factory=session_factory)
    config.include('pyramid_beaker')                          
    config.include('pyramid_chameleon')

    authn_policy = AuthTktAuthenticationPolicy('sosecret',
                    callback=group_finder, hashalg='sha512')
    authz_policy = ACLAuthorizationPolicy()                          
    config.set_authentication_policy(authn_policy)
    config.set_authorization_policy(authz_policy)
    config.add_request_method(get_user, 'user', reify=True)
    config.add_request_method(get_title, 'title', reify=True)
    config.add_notfound_view(RemoveSlashNotFoundViewFactory())        
                          
    config.add_static_view('static', 'static', cache_max_age=3600)
    config.add_static_view('deform_static', 'deform:static')
    config.add_static_view('files', settings['static_files'])    

    config.add_renderer('csv', '.tools.CSVRenderer')
    
    for name, path, title in routes:
        config.add_route(name, path)
    config.scan()
    app = config.make_wsgi_app()
    from paste.translogger import TransLogger
    app = TransLogger(app, setup_console_handler=False)    
    return app
Exemple #30
0
import string
from decimal import Decimal
from datetime import date, datetime

def get_date_and_shop(session):
    d = shared.get_answer(
        'Data zakupów DD-MM-YYYY',
        date.today().strftime('%d-%m-%Y'),
        '^[0-4][0-9]-[0-1][0-9]-[0-9]{4}'
    )
    sklep = shared.choice('Wybierz sklep', session, m.Sklep, shared.enter_new(m.Sklep, session)) 
    return datetime.strptime(d, '%d-%m-%Y'), sklep


if __name__ == '__main__':
    m.init_model()
    m.meta.create_all(m.meta.engine)
    session = m.Session()

    (data, sklep) = get_date_and_shop(session)

    while True:
        try:
            kategoria = shared.choice('Wybierz kategorię: ', session, m.Kategoria, shared.enter_new(m.Kategoria))
            podkategoria = shared.choice(
                'Wybierz podkategorię: ',
                session,
                m.Podkategoria,
                shared.enter_new(m.Podkategoria, kategoria),
                query_processor = lambda x: x.filter(m.Podkategoria.kategoria_id == kategoria.id)
            )
def main():
    torch.manual_seed(args.seed)
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_devices
    use_gpu = torch.cuda.is_available()
    if args.use_cpu:
        use_gpu = False
    if not args.evaluate:
        sys.stdout = Logger(osp.join(args.save_dir, 'log_train.txt'))
    else:
        sys.stdout = Logger(osp.join(args.save_dir, 'log_test.txt'))
    print("==========\nArgs:{}\n==========".format(args))

    if use_gpu:
        print("Currently using GPU {}".format(args.gpu_devices))
        cudnn.benchmark = True
        torch.cuda.manual_seed_all(args.seed)
    else:
        print("Currently using CPU (GPU is highly recommended)")

    print("Initializing dataset {}".format(args.dataset))
    train_dataset = data_manager.init_dataset(
        root=args.root,
        name='json',
        phase='train'
    )
    valid_dataset = data_manager.init_dataset(
        root=args.root,
        name='json',
        phase='valid'
    )

    test_dataset = data_manager.init_dataset(
        root=args.root,
        name='json',
        phase='test'
    )

    test_mask = test_dataset.mask

    pin_memory = True if use_gpu else False

    trainloader = DataLoader(
        JsonDataset(train_dataset),
        num_workers=4,
        batch_size=args.train_batch,
        pin_memory=pin_memory,
        drop_last=True
    )

    validloader = DataLoader(
        JsonDataset(valid_dataset),
        num_workers=4,
        batch_size=args.test_batch,
        pin_memory=pin_memory,
        drop_last=True
    )

    testloader = DataLoader(
        JsonDataset(test_dataset),
        num_workers=4,
        batch_size=args.test_batch,
        pin_memory=pin_memory,
        drop_last=True
    )

    print("Initializing model: {}".format(args.arch))
    model = models.init_model(
        name=args.arch,
        use_gpu=use_gpu)
    print("Model size: {:.3f} M".format(count_num_param(model)))

    model.init_weights()
    criterion_label = LabelLoss()

    optimizer = init_optim(
        args.optim,
        model.parameters(),
        args.lr,
        args.weight_decay)
    scheduler = lr_scheduler.MultiStepLR(
        optimizer, milestones=args.stepsize, gamma=args.gamma)
    start_epoch = args.start_epoch

    if args.load_weights:
        # load pretrained weights but ignore layers that don't match in size
        print("Loading pretrained weights from '{}'".format(args.load_weights))
        checkpoint = torch.load(args.load_weights)
        pretrain_dict = checkpoint['state_dict']
        model_dict = model.state_dict()
        pretrain_dict = {k: v for k, v in pretrain_dict.items(
        ) if k in model_dict and model_dict[k].size() == v.size()}
        model_dict.update(pretrain_dict)
        model.load_state_dict(model_dict)

    if args.resume:
        checkpoint = torch.load(args.resume)
        model.load_state_dict(checkpoint['state_dict'])
        start_epoch = checkpoint['epoch']
        print("Loaded checkpoint from '{}'".format(args.resume))
        print("- start_epoch: {}".format(start_epoch))

    # if use_gpu:
    # str_ids = args.gpu_devices.split(',')
    # gpu_ids = []
    # for str_id in str_ids:
    #     id = int(str_id)
    #     if id >= 0:
    #         gpu_ids.append(id)
    # model = nn.DataParallel(model, gpu_ids)
    device = torch.device('cuda' if use_gpu and torch.cuda.is_available() else 'cpu')
    model.to(device)

    if args.evaluate:
        print("Evaluate only")
        start_evaluate_time = time.time()
        test_thetas = evaluate(model, testloader, use_gpu, args.test_batch, test_mask)
        evaluate_time = time.time() - start_evaluate_time
        print('Evaluate: {} secs'.format(evaluate_time))
        with open("auto_sample.csv", "r") as csvfiler:
            with open("test_thetas5.csv", "w") as csvfilew:
                reader = csv.reader(csvfiler)
                for item in reader:
                    if reader.line_num == 1:
                        writer = csv.writer(csvfilew)
                        writer.writerow(['test_id', 'result'])
                        continue
                    writer = csv.writer(csvfilew)
                    writer.writerow([item[0], str(test_thetas[reader.line_num - 2])])
        # writer.writerows(map(lambda x: [x], test_thetas))
        return

    start_time = time.time()
    train_time = 0
    best_label_loss = np.inf
    best_epoch = 0
    #
    # print("==> Test")
    # label_loss = test(model, validloader, criterion_label, use_gpu, args.test_batch)
    # print("test label loss RMES() is {}".format(label_loss))
    #
    # print("==> Start training")

    for epoch in range(start_epoch, args.max_epoch):
        start_train_time = time.time()
        train(
            epoch,
            model,
            criterion_label,
            optimizer,
            trainloader,
            use_gpu)
        train_time += round(time.time() - start_train_time)

        scheduler.step()

        # save model every epoch
        if (epoch + 1) % args.save_step == 0:
            print("==> Now save epoch {} \'s model".format(epoch + 1))
            # if use_gpu:
            #     state_dict = model.state_dict() #  module.
            # else:
            state_dict = model.state_dict()

            save_checkpoint({
                'state_dict': state_dict,
                'epoch': epoch
            }, False, osp.join(args.save_dir, 'checkpoint_latest.pth'))

        # test model every eval_step
        if (epoch + 1) > args.start_eval and args.eval_step > 0 and (epoch + 1) % args.eval_step == 0 or \
                (epoch + 1) == args.max_epoch:
            print("==> Test")
            label_loss = test(model, validloader, criterion_label, use_gpu, args.test_batch)
            is_best = label_loss < best_label_loss

            if is_best:
                best_label_loss = label_loss
                best_epoch = epoch + 1

            # if use_gpu:
            #     state_dict = model.state_dict()
            # else:
            state_dict = model.state_dict()

            save_checkpoint({
                'state_dict': state_dict,
                'label_loss': label_loss,
                'epoch': epoch,
            }, is_best, osp.join(args.save_dir, 'checkpoint_ep' + str(epoch + 1) + '.pth'))  # .pth.tar

    print(
        "==> Best Label Loss {:.3}, achieved at epoch {}".format(best_label_loss, best_epoch))

    elapsed = round(time.time() - start_time)
    elapsed = str(datetime.timedelta(seconds=elapsed))
    train_time = str(datetime.timedelta(seconds=train_time))
    print(
        "Finished. Total elapsed time (h:m:s): {}. Training time (h:m:s): {}.".format(
            elapsed,
            train_time))
Exemple #32
0
def main():
    torch.manual_seed(args.seed)
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_devices
    use_gpu = torch.cuda.is_available()
    if args.use_cpu: use_gpu = False

    if not args.evaluate:
        sys.stdout = Logger(osp.join(args.save_dir, 'log_train.txt'))
    else:
        sys.stdout = Logger(osp.join(args.save_dir, 'log_test.txt'))
    print("==========\nArgs:{}\n==========".format(args))

    if use_gpu:
        print("Currently using GPU {}".format(args.gpu_devices))
        cudnn.benchmark = True
        torch.cuda.manual_seed_all(args.seed)
    else:
        print("Currently using CPU (GPU is highly recommended)")

    print("Initializing dataset {}".format(args.dataset))
    dataset = data_manager.init_imgreid_dataset(
        root=args.root, name=args.dataset, split_id=args.split_id,
        cuhk03_labeled=args.cuhk03_labeled, cuhk03_classic_split=args.cuhk03_classic_split,
        use_lmdb=args.use_lmdb,
    )

    transform_train = T.Compose([
        T.Random2DTranslation(args.height, args.width),
        T.RandomHorizontalFlip(),
        T.ToTensor(),
        T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
    ])

    transform_test = T.Compose([
        T.Resize((args.height, args.width)),
        T.ToTensor(),
        T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
    ])

    pin_memory = True if use_gpu else False

    trainloader = DataLoader(
        ImageDataset(dataset.train, transform=transform_train,
                     use_lmdb=args.use_lmdb, lmdb_path=dataset.train_lmdb_path),
        batch_size=args.train_batch, shuffle=True, num_workers=args.workers,
        pin_memory=pin_memory, drop_last=True,
    )

    queryloader = DataLoader(
        ImageDataset(dataset.query, transform=transform_test,
                     use_lmdb=args.use_lmdb, lmdb_path=dataset.query_lmdb_path),
        batch_size=args.test_batch, shuffle=False, num_workers=args.workers,
        pin_memory=pin_memory, drop_last=False,
    )

    galleryloader = DataLoader(
        ImageDataset(dataset.gallery, transform=transform_test,
                     use_lmdb=args.use_lmdb, lmdb_path=dataset.gallery_lmdb_path),
        batch_size=args.test_batch, shuffle=False, num_workers=args.workers,
        pin_memory=pin_memory, drop_last=False,
    )

    print("Initializing model: {}".format(args.arch))
    model = models.init_model(name=args.arch, num_classes=dataset.num_train_pids, loss={'xent'}, use_gpu=use_gpu)
    print("Model size: {:.3f} M".format(count_num_param(model)))

    criterion = CrossEntropyLabelSmooth(num_classes=dataset.num_train_pids, use_gpu=use_gpu)
    optimizer = init_optim(args.optim, model.parameters(), args.lr, args.weight_decay)
    scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=args.stepsize, gamma=args.gamma)
    start_epoch = args.start_epoch

    if args.fixbase_epoch > 0:
        optimizer_tmp = init_optim(args.optim, model.classifier.parameters(), args.fixbase_lr, args.weight_decay)

    if args.resume:
        print("Loading checkpoint from '{}'".format(args.resume))
        checkpoint = torch.load(args.resume)
        model.load_state_dict(checkpoint['state_dict'])
        start_epoch = checkpoint['epoch']

    if use_gpu:
        model = nn.DataParallel(model).cuda()

    if args.evaluate:
        print("Evaluate only")
        test(model, queryloader, galleryloader, use_gpu)
        return

    start_time = time.time()
    train_time = 0
    best_rank1 = -np.inf
    best_epoch = 0
    print("==> Start training")

    if args.fixbase_epoch > 0:
        print("Train classifier for {} epochs while keeping base network frozen".format(args.fixbase_epoch))

        for epoch in range(args.fixbase_epoch):
            start_train_time = time.time()
            train(epoch, model, criterion, optimizer_tmp, trainloader, use_gpu, freeze_bn=True)
            train_time += round(time.time() - start_train_time)

        del optimizer_tmp
        print("Now open all layers for training")

    for epoch in range(start_epoch, args.max_epoch):
        start_train_time = time.time()
        train(epoch, model, criterion, optimizer, trainloader, use_gpu)
        train_time += round(time.time() - start_train_time)
        
        scheduler.step()
        
        if (epoch+1) > args.start_eval and args.eval_step > 0 and (epoch+1) % args.eval_step == 0 or (epoch+1) == args.max_epoch:
            print("==> Test")
            rank1 = test(model, queryloader, galleryloader, use_gpu)
            is_best = rank1 > best_rank1
            
            if is_best:
                best_rank1 = rank1
                best_epoch = epoch + 1
            
            if use_gpu:
                state_dict = model.module.state_dict()
            else:
                state_dict = model.state_dict()
            
            save_checkpoint({
                'state_dict': state_dict,
                'rank1': rank1,
                'epoch': epoch,
            }, is_best, osp.join(args.save_dir, 'checkpoint_ep' + str(epoch+1) + '.pth.tar'))

    print("==> Best Rank-1 {:.1%}, achieved at epoch {}".format(best_rank1, best_epoch))

    elapsed = round(time.time() - start_time)
    elapsed = str(datetime.timedelta(seconds=elapsed))
    train_time = str(datetime.timedelta(seconds=train_time))
    print("Finished. Total elapsed time (h:m:s): {}. Training time (h:m:s): {}.".format(elapsed, train_time))
def main():
    torch.manual_seed(args.seed)
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_devices
    use_gpu = torch.cuda.is_available()
    if args.use_cpu: use_gpu = False

    if not args.evaluate:
        sys.stdout = Logger(osp.join(args.save_dir, 'log_train.txt'))
    else:
        sys.stdout = Logger(osp.join(args.save_dir, 'log_test.txt'))
    print("==========\nArgs:{}\n==========".format(args))

    if use_gpu:
        print("Currently using GPU {}".format(args.gpu_devices))
        cudnn.benchmark = True
        torch.cuda.manual_seed_all(args.seed)
    else:
        print("Currently using CPU (GPU is highly recommended)")

    print("Initializing dataset {}".format(args.dataset))
    dataset = data_manager.init_imgreid_dataset(
        root=args.root, name=args.dataset, split_id=args.split_id,
        cuhk03_labeled=args.cuhk03_labeled, cuhk03_classic_split=args.cuhk03_classic_split,
        use_lmdb=args.use_lmdb,
    )

    transform_train = T.Compose([
        T.Random2DTranslation(args.height, args.width),
        T.RandomHorizontalFlip(),
        T.ToTensor(),
        T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
    ])

    transform_test = T.Compose([
        T.Resize((args.height, args.width)),
        T.ToTensor(),
        T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
    ])

    pin_memory = True if use_gpu else False

    trainloader = DataLoader(
        ImageDataset(dataset.train, transform=transform_train,
                     use_lmdb=args.use_lmdb, lmdb_path=dataset.train_lmdb_path),
        batch_size=args.train_batch, shuffle=True, num_workers=args.workers,
        pin_memory=pin_memory, drop_last=True,
    )

    queryloader = DataLoader(
        ImageDataset(dataset.query, transform=transform_test,
                     use_lmdb=args.use_lmdb, lmdb_path=dataset.query_lmdb_path),
        batch_size=args.test_batch, shuffle=False, num_workers=args.workers,
        pin_memory=pin_memory, drop_last=False,
    )

    galleryloader = DataLoader(
        ImageDataset(dataset.gallery, transform=transform_test,
                     use_lmdb=args.use_lmdb, lmdb_path=dataset.gallery_lmdb_path),
        batch_size=args.test_batch, shuffle=False, num_workers=args.workers,
        pin_memory=pin_memory, drop_last=False,
    )

    print("Initializing model: {}".format(args.arch))
    model = models.init_model(name=args.arch, num_classes=dataset.num_train_pids, loss={'xent'}, use_gpu=use_gpu)
    print("Model size: {:.3f} M".format(count_num_param(model)))

    criterion = CrossEntropyLabelSmooth(num_classes=dataset.num_train_pids, use_gpu=use_gpu)
    optimizer = init_optim(args.optim, model.parameters(), args.lr, args.weight_decay)
    scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=args.stepsize, gamma=args.gamma)
    start_epoch = args.start_epoch

    if args.fixbase_epoch > 0:
        if hasattr(model, 'classifier') and isinstance(model.classifier, nn.Module):
            optimizer_tmp = init_optim(args.optim, model.classifier.parameters(), args.fixbase_lr, args.weight_decay)
        else:
            print("Warn: model has no attribute 'classifier' and fixbase_epoch is reset to 0")
            args.fixbase_epoch = 0

    if args.load_weights:
        # load pretrained weights but ignore layers that don't match in size
        print("Loading pretrained weights from '{}'".format(args.load_weights))
        checkpoint = torch.load(args.load_weights)
        pretrain_dict = checkpoint['state_dict']
        model_dict = model.state_dict()
        pretrain_dict = {k: v for k, v in pretrain_dict.items() if k in model_dict and model_dict[k].size() == v.size()}
        model_dict.update(pretrain_dict)
        model.load_state_dict(model_dict)

    if args.resume:
        checkpoint = torch.load(args.resume)
        model.load_state_dict(checkpoint['state_dict'])
        start_epoch = checkpoint['epoch']
        rank1 = checkpoint['rank1']
        print("Loaded checkpoint from '{}'".format(args.resume))
        print("- start_epoch: {}\n- rank1: {}".format(start_epoch, rank1))

    if use_gpu:
        model = nn.DataParallel(model).cuda()

    if args.evaluate:
        print("Evaluate only")
        test(model, queryloader, galleryloader, use_gpu)
        return

    start_time = time.time()
    train_time = 0
    best_rank1 = -np.inf
    best_epoch = 0
    print("==> Start training")

    if args.fixbase_epoch > 0:
        print("Train classifier for {} epochs while keeping base network frozen".format(args.fixbase_epoch))

        for epoch in range(args.fixbase_epoch):
            start_train_time = time.time()
            train(epoch, model, criterion, optimizer_tmp, trainloader, use_gpu, freeze_bn=True)
            train_time += round(time.time() - start_train_time)

        del optimizer_tmp
        print("Now open all layers for training")

    for epoch in range(start_epoch, args.max_epoch):
        start_train_time = time.time()
        train(epoch, model, criterion, optimizer, trainloader, use_gpu)
        train_time += round(time.time() - start_train_time)
        
        scheduler.step()
        
        if (epoch+1) > args.start_eval and args.eval_step > 0 and (epoch+1) % args.eval_step == 0 or (epoch+1) == args.max_epoch:
            print("==> Test")
            rank1 = test(model, queryloader, galleryloader, use_gpu)
            is_best = rank1 > best_rank1
            
            if is_best:
                best_rank1 = rank1
                best_epoch = epoch + 1
            
            if use_gpu:
                state_dict = model.module.state_dict()
            else:
                state_dict = model.state_dict()
            
            save_checkpoint({
                'state_dict': state_dict,
                'rank1': rank1,
                'epoch': epoch,
            }, is_best, osp.join(args.save_dir, 'checkpoint_ep' + str(epoch+1) + '.pth.tar'))

    print("==> Best Rank-1 {:.1%}, achieved at epoch {}".format(best_rank1, best_epoch))

    elapsed = round(time.time() - start_time)
    elapsed = str(datetime.timedelta(seconds=elapsed))
    train_time = str(datetime.timedelta(seconds=train_time))
    print("Finished. Total elapsed time (h:m:s): {}. Training time (h:m:s): {}.".format(elapsed, train_time))
Exemple #34
0
def main():
    torch.manual_seed(args.seed)
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_devices
    use_gpu = torch.cuda.is_available()
    if args.use_cpu: use_gpu = False

    if not args.evaluate:
        sys.stdout = Logger(osp.join(args.save_dir, 'log_train.txt'))
    else:
        sys.stdout = Logger(osp.join(args.save_dir, 'log_test.txt'))
    print("==========\nArgs:{}\n==========".format(args))

    if use_gpu:
        print("Currently using GPU {}".format(args.gpu_devices))
        cudnn.benchmark = True
        torch.cuda.manual_seed_all(args.seed)
    else:
        print("Currently using CPU (GPU is highly recommended)")

    #print("Initializing dataset {}".format(args.dataset))
    # dataset = data_manager.init_dataset(name=args.dataset)

    transform_train = T.Compose([
        T.Random2DTranslation(args.height, args.width),
        T.RandomHorizontalFlip(),
        T.ToTensor(),
        T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
    ])
    transform_train_p = T.Compose([
        T.Random2DTranslation(256, 128),
        T.RandomHorizontalFlip(),
        T.ToTensor(),
        T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
    ])

    transform_test = T.Compose([
        T.Resize((args.height, args.width)),
        T.ToTensor(),
        T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
    ])

    transform_test_p = T.Compose([
        T.Resize((256, 128)),
        T.ToTensor(),
        T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
    ])
    train_file = 'data/cuhk_train.pkl'
    test_file = 'data/cuhk_test.pkl'
    gallery_file = 'data/cuhk_gallery.pkl'
    data_root = args.data_root
    dataset_train = CUHKGroup(train_file, data_root, True, transform_train, transform_train_p)
    dataset_test = CUHKGroup(test_file, data_root, False, transform_test, transform_test_p)
    dataset_query = CUHKGroup(test_file, data_root, False, transform_test, transform_test_p)
    dataset_gallery = CUHKGroup(gallery_file, data_root, False, transform_test, transform_test_p)


    pin_memory = True if use_gpu else False

    if args.xent_only:
        trainloader = DataLoader(
        dataset_train,
        batch_size=args.train_batch, shuffle=True, num_workers=args.workers,
        pin_memory=pin_memory, drop_last=True,
    )
    else:
        trainloader = DataLoader(
            dataset_train,
            sampler=RandomIdentitySampler(dataset_train, num_instances=args.num_instances),
            batch_size=args.train_batch, num_workers=args.workers,
            pin_memory=pin_memory, drop_last=True,
        )

    queryloader = DataLoader(
        dataset_test,
        batch_size=args.test_batch, shuffle=False, num_workers=args.workers,
        pin_memory=pin_memory, drop_last=False,
    )

    querygalleryloader = DataLoader(
        dataset_query,
        batch_size=args.gallery_batch, shuffle=False, num_workers=args.workers,
        pin_memory=pin_memory, drop_last=True,
    )

    galleryloader = DataLoader(
        dataset_gallery,
        batch_size=args.gallery_batch, shuffle=False, num_workers=args.workers,
        pin_memory=pin_memory, drop_last=True,
    )

    print("Initializing model: {}".format(args.arch))
    if args.xent_only:
        # model = models.init_model(name=args.arch, num_classes=dataset_train.num_train_gids, loss={'xent'})
        model = models.init_model(name=args.arch, num_classes=dataset_train.num_train_gids, loss={'xent'})
    else:
        # model = models.init_model(name=args.arch, num_classes=dataset_train.num_train_gids, loss={'xent', 'htri'})
        model = models.init_model(name=args.arch, num_classes=dataset_train.num_train_gids,
                                  num_person_classes=dataset_train.num_train_pids, loss={'xent', 'htri'})

    #criterion_xent = CrossEntropyLabelSmooth(num_classes=dataset_train.num_train_gids, use_gpu=use_gpu)
    #criterion_xent_person = CrossEntropyLabelSmooth(num_classes=dataset_train.num_train_pids, use_gpu=use_gpu)
    if os.path.exists(args.pretrained_model):
        print("Loading checkpoint from '{}'".format(args.pretrained_model))
        checkpoint = torch.load(args.pretrained_model)
        model_dict = model.state_dict()
        pretrain_dict = checkpoint['state_dict']
        pretrain_dict = {k:v for k, v in pretrain_dict.items() if k in model_dict}
        model_dict.update(pretrain_dict)
        model.load_state_dict(model_dict)

    criterion_xent = nn.CrossEntropyLoss(ignore_index=-1)
    criterion_xent_person = nn.CrossEntropyLoss(ignore_index=-1)
    criterion_htri = TripletLoss(margin=args.margin)
    criterion_pair = ContrastiveLoss(margin=args.margin)
    criterion_htri_filter = TripletLossFilter(margin=args.margin)
    criterion_permutation = PermutationLoss()

    optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=args.lr,
                                 weight_decay=args.weight_decay)

    if args.stepsize > 0:
        if args.warmup:
            scheduler = WarmupMultiStepLR(optimizer, [200, 400, 600])
        else:
            scheduler = lr_scheduler.StepLR(optimizer, step_size=args.stepsize, gamma=args.gamma)
    start_epoch = args.start_epoch

    if use_gpu:
        model = nn.DataParallel(model).cuda()

    if args.evaluate:
        print("Evaluate only")
        test_gcn_person_batch(model, queryloader, querygalleryloader, galleryloader, args.pool, use_gpu)
        #test_gcn_batch(model, queryloader, querygalleryloader, galleryloader, args.pool, use_gpu)
        #test_gcn(model, queryloader, galleryloader, args.pool, use_gpu)
        #test(model, queryloader, galleryloader, args.pool, use_gpu)
        return

    start_time = time.time()
    best_rank1 = -np.inf
    for epoch in range(start_epoch, args.max_epoch):
        #print("==> Epoch {}/{}  lr:{}".format(epoch + 1, args.max_epoch, scheduler.get_lr()[0]))

        train_gcn(model, criterion_xent, criterion_xent_person, criterion_pair, criterion_htri_filter, criterion_permutation, optimizer, trainloader, use_gpu)
        #train_gcn(model, criterion_xent, criterion_xent_person, criterion_pair, criterion_htri_filter, optimizer, trainloader, use_gpu)
        #train(model, criterion_xent, criterion_htri, optimizer, trainloader, use_gpu)

        if args.stepsize > 0: scheduler.step()

        if args.eval_step > 0 and (epoch + 1) % args.eval_step == 0 or (epoch + 1) == args.max_epoch:
            print("==> Test")
            rank1 = test_gcn_person_batch(model, queryloader, querygalleryloader, galleryloader, args.pool, use_gpu)
            #rank1 = test_gcn(model, queryloader, galleryloader, args.pool, use_gpu=False)
            #rank1 = test(model, queryloader, galleryloader, args.pool, use_gpu)
            is_best = rank1 > best_rank1
            if is_best: best_rank1 = rank1
            
            if use_gpu:
                state_dict = model.module.state_dict()
            else:
                state_dict = model.state_dict()
            save_checkpoint({
                'state_dict': state_dict,
                'rank1': rank1,
                'epoch': epoch,
            }, is_best, osp.join(args.save_dir, 'checkpoint_ep' + str(epoch + 1) + '.pth.tar'))
            

    elapsed = round(time.time() - start_time)
    elapsed = str(datetime.timedelta(seconds=elapsed))
    print("Finished. Total elapsed time (h:m:s): {}".format(elapsed))