def update_value_empty(): for candidate in models.data_reader.candidates: c = models.return_index(candidate.name) last_i = 0 for i in range(0, len(dates_graph)): #Verifica se o candidato foi para o segundo turno # if(i <= 21 or models.data_reader.candidates[c].round2 == True): if (models.data_reader.candidates[c].facebook_male[i] == -100): models.data_reader.candidates[c].facebook_male[ i] = return_new_value_graph( models.data_reader.candidates[c].facebook_male, last_i, i) models.data_reader.candidates[c].facebook_female[ i] = return_new_value_graph( models.data_reader.candidates[c].facebook_female, last_i, i) models.data_reader.candidates[c].facebook_16a24[ i] = return_new_value_graph( models.data_reader.candidates[c].facebook_16a24, last_i, i) models.data_reader.candidates[c].facebook_25a34[ i] = return_new_value_graph( models.data_reader.candidates[c].facebook_25a34, last_i, i) models.data_reader.candidates[c].facebook_35a44[ i] = return_new_value_graph( models.data_reader.candidates[c].facebook_35a44, last_i, i) models.data_reader.candidates[c].facebook_45a54[ i] = return_new_value_graph( models.data_reader.candidates[c].facebook_45a54, last_i, i) models.data_reader.candidates[c].facebook_55[ i] = return_new_value_graph( models.data_reader.candidates[c].facebook_55, last_i, i) models.data_reader.candidates[c].facebook_norte_coeste[ i] = return_new_value_graph( models.data_reader.candidates[c].facebook_norte_coeste, last_i, i) models.data_reader.candidates[c].facebook_nordeste[ i] = return_new_value_graph( models.data_reader.candidates[c].facebook_nordeste, last_i, i) models.data_reader.candidates[c].facebook_sudeste[ i] = return_new_value_graph( models.data_reader.candidates[c].facebook_sudeste, last_i, i) models.data_reader.candidates[c].facebook_sul[ i] = return_new_value_graph( models.data_reader.candidates[c].facebook_sul, last_i, i) models.data_reader.candidates[c].facebook_fundamental[ i] = return_new_value_graph( models.data_reader.candidates[c].facebook_fundamental, last_i, i) models.data_reader.candidates[c].facebook_medio[ i] = return_new_value_graph( models.data_reader.candidates[c].facebook_medio, last_i, i) models.data_reader.candidates[c].facebook_superior[ i] = return_new_value_graph( models.data_reader.candidates[c].facebook_superior, last_i, i) else: last_i = i
def read_json(comLula): if (comLula == True): with open(os.getcwd() + '\..\Data\PresidentialElection-ComLula.json') as js: poolElection = json.load(js) else: with open(os.getcwd() + '\..\Data\PresidentialElection-SemLula.json') as js: poolElection = json.load(js) for data in poolElection['elections_poll']: for candidate in data['candidates']: i = models.return_index(candidate['name']) if (i >= 0): if (data['institute'] == 'DataFolha' or data['institute'] == 'Resultado'): if (data["date"] in data_dfolha): models.data_reader.candidates[i].dfolha_male.append( candidate['gender']['male']) models.data_reader.candidates[i].dfolha_female.append( candidate['gender']['female']) models.data_reader.candidates[i].dfolha_16a24.append( candidate['age_intervals']['age_16_24']) models.data_reader.candidates[i].dfolha_25a34.append( candidate['age_intervals']['age_25_34']) models.data_reader.candidates[i].dfolha_35a44.append( candidate['age_intervals']['age_35_44']) models.data_reader.candidates[i].dfolha_45a54.append( candidate['age_intervals']['age_45_54']) models.data_reader.candidates[i].dfolha_55.append( candidate['age_intervals']['above_55']) models.data_reader.candidates[ i].dfolha_norte_coeste.append( candidate['regions']['north_midwest']) models.data_reader.candidates[ i].dfolha_nordeste.append( candidate['regions']['northeast']) models.data_reader.candidates[i].dfolha_sudeste.append( candidate['regions']['southeast']) models.data_reader.candidates[i].dfolha_sul.append( candidate['regions']['south']) models.data_reader.candidates[ i].dfolha_fundamental.append( candidate['education_status'] ['elementary_school']) models.data_reader.candidates[i].dfolha_medio.append( candidate['education_status']['high_school']) models.data_reader.candidates[i].dfolha_superior.append( candidate['education_status']['higher_education']) models.data_reader.candidates[i].dfolha_score.append( candidate['score']) if (data['institute'] == 'IBOPE' or data['institute'] == 'Resultado'): if (data["date"] in data_ibope): models.data_reader.candidates[i].ibope_male.append( candidate['gender']['male']) models.data_reader.candidates[i].ibope_female.append( candidate['gender']['female']) models.data_reader.candidates[i].ibope_16a24.append( candidate['age_intervals']['age_16_24']) models.data_reader.candidates[i].ibope_25a34.append( candidate['age_intervals']['age_25_34']) models.data_reader.candidates[i].ibope_35a44.append( candidate['age_intervals']['age_35_44']) models.data_reader.candidates[i].ibope_45a54.append( candidate['age_intervals']['age_45_54']) models.data_reader.candidates[i].ibope_55.append( candidate['age_intervals']['above_55']) models.data_reader.candidates[ i].ibope_norte_coeste.append( candidate['regions']['north_midwest']) models.data_reader.candidates[i].ibope_nordeste.append( candidate['regions']['northeast']) models.data_reader.candidates[i].ibope_sudeste.append( candidate['regions']['southeast']) models.data_reader.candidates[i].ibope_sul.append( candidate['regions']['south']) models.data_reader.candidates[ i].ibope_fundamental.append( candidate['education_status'] ['elementary_school']) models.data_reader.candidates[i].ibope_medio.append( candidate['education_status']['high_school']) models.data_reader.candidates[i].ibope_superior.append( candidate['education_status']['higher_education']) models.data_reader.candidates[i].ibope_score.append( candidate['score']) # #Repete o resultado da eleição no próximo ponto # if(data['institute'] == 'Resultado'): # if(data["round"] == 1 and (candidate['name'] == "Jair Bolsonaro" or candidate['name'] == "Fernando Haddad")): # models.data_reader.candidates[i].ibope_male.append(models.data_reader.candidates[i].ibope_male[-1]) # models.data_reader.candidates[i].ibope_female.append(models.data_reader.candidates[i].ibope_female[-1]) # models.data_reader.candidates[i].ibope_16a24.append(models.data_reader.candidates[i].ibope_16a24[-1]) # models.data_reader.candidates[i].ibope_25a34.append(models.data_reader.candidates[i].ibope_25a34[-1]) # models.data_reader.candidates[i].ibope_35a44.append(models.data_reader.candidates[i].ibope_35a44[-1]) # models.data_reader.candidates[i].ibope_45a54.append(models.data_reader.candidates[i].ibope_45a54[-1]) # models.data_reader.candidates[i].ibope_55.append(models.data_reader.candidates[i].ibope_55[-1]) # models.data_reader.candidates[i].ibope_norte_coeste.append(models.data_reader.candidates[i].ibope_norte_coeste[-1]) # models.data_reader.candidates[i].ibope_nordeste.append(models.data_reader.candidates[i].ibope_nordeste[-1]) # models.data_reader.candidates[i].ibope_sudeste.append(models.data_reader.candidates[i].ibope_sudeste[-1]) # models.data_reader.candidates[i].ibope_sul.append(models.data_reader.candidates[i].ibope_sul[-1]) # models.data_reader.candidates[i].ibope_fundamental.append(models.data_reader.candidates[i].ibope_fundamental[-1]) # models.data_reader.candidates[i].ibope_medio.append(models.data_reader.candidates[i].ibope_medio[-1]) # models.data_reader.candidates[i].ibope_superior.append(models.data_reader.candidates[i].ibope_superior[-1]) models.complete_data_zero()
def update_value_empty(): for candidate in models.data_reader.candidates: c = models.return_index(candidate.name) last_i_dfolha = 0 last_i_ibope = 0 for i in range(0, len(dates_graph)): #Verifica se o candidato foi para o segundo turno if (i <= 21 or models.data_reader.candidates[c].round2 == True): #DataFolha if (models.data_reader.candidates[c].dfolha_male[i] == -100): models.data_reader.candidates[c].dfolha_male[ i] = return_new_value_graph( models.data_reader.candidates[c].dfolha_male, last_i_dfolha, i) models.data_reader.candidates[c].dfolha_female[ i] = return_new_value_graph( models.data_reader.candidates[c].dfolha_female, last_i_dfolha, i) models.data_reader.candidates[c].dfolha_16a24[ i] = return_new_value_graph( models.data_reader.candidates[c].dfolha_16a24, last_i_dfolha, i) models.data_reader.candidates[c].dfolha_25a34[ i] = return_new_value_graph( models.data_reader.candidates[c].dfolha_25a34, last_i_dfolha, i) models.data_reader.candidates[c].dfolha_35a44[ i] = return_new_value_graph( models.data_reader.candidates[c].dfolha_35a44, last_i_dfolha, i) models.data_reader.candidates[c].dfolha_45a54[ i] = return_new_value_graph( models.data_reader.candidates[c].dfolha_45a54, last_i_dfolha, i) models.data_reader.candidates[c].dfolha_55[ i] = return_new_value_graph( models.data_reader.candidates[c].dfolha_55, last_i_dfolha, i) models.data_reader.candidates[c].dfolha_norte_coeste[ i] = return_new_value_graph( models.data_reader.candidates[c]. dfolha_norte_coeste, last_i_dfolha, i) models.data_reader.candidates[c].dfolha_nordeste[ i] = return_new_value_graph( models.data_reader.candidates[c].dfolha_nordeste, last_i_dfolha, i) models.data_reader.candidates[c].dfolha_sudeste[ i] = return_new_value_graph( models.data_reader.candidates[c].dfolha_sudeste, last_i_dfolha, i) models.data_reader.candidates[c].dfolha_sul[ i] = return_new_value_graph( models.data_reader.candidates[c].dfolha_sul, last_i_dfolha, i) models.data_reader.candidates[c].dfolha_fundamental[ i] = return_new_value_graph( models.data_reader.candidates[c]. dfolha_fundamental, last_i_dfolha, i) models.data_reader.candidates[c].dfolha_medio[ i] = return_new_value_graph( models.data_reader.candidates[c].dfolha_medio, last_i_dfolha, i) models.data_reader.candidates[c].dfolha_superior[ i] = return_new_value_graph( models.data_reader.candidates[c].dfolha_superior, last_i_dfolha, i) else: last_i_dfolha = i #IBOPE if (models.data_reader.candidates[c].ibope_male[i] == -100): models.data_reader.candidates[c].ibope_male[ i] = return_new_value_graph( models.data_reader.candidates[c].ibope_male, last_i_ibope, i) models.data_reader.candidates[c].ibope_female[ i] = return_new_value_graph( models.data_reader.candidates[c].ibope_female, last_i_ibope, i) models.data_reader.candidates[c].ibope_16a24[ i] = return_new_value_graph( models.data_reader.candidates[c].ibope_16a24, last_i_ibope, i) models.data_reader.candidates[c].ibope_25a34[ i] = return_new_value_graph( models.data_reader.candidates[c].ibope_25a34, last_i_ibope, i) models.data_reader.candidates[c].ibope_35a44[ i] = return_new_value_graph( models.data_reader.candidates[c].ibope_35a44, last_i_ibope, i) models.data_reader.candidates[c].ibope_45a54[ i] = return_new_value_graph( models.data_reader.candidates[c].ibope_45a54, last_i_ibope, i) models.data_reader.candidates[c].ibope_55[ i] = return_new_value_graph( models.data_reader.candidates[c].ibope_55, last_i_ibope, i) models.data_reader.candidates[c].ibope_norte_coeste[ i] = return_new_value_graph( models.data_reader.candidates[c]. ibope_norte_coeste, last_i_ibope, i) models.data_reader.candidates[c].ibope_nordeste[ i] = return_new_value_graph( models.data_reader.candidates[c].ibope_nordeste, last_i_ibope, i) models.data_reader.candidates[c].ibope_sudeste[ i] = return_new_value_graph( models.data_reader.candidates[c].ibope_sudeste, last_i_ibope, i) models.data_reader.candidates[c].ibope_sul[ i] = return_new_value_graph( models.data_reader.candidates[c].ibope_sul, last_i_ibope, i) models.data_reader.candidates[c].ibope_fundamental[ i] = return_new_value_graph( models.data_reader.candidates[c].ibope_fundamental, last_i_ibope, i) models.data_reader.candidates[c].ibope_medio[ i] = return_new_value_graph( models.data_reader.candidates[c].ibope_medio, last_i_ibope, i) models.data_reader.candidates[c].ibope_superior[ i] = return_new_value_graph( models.data_reader.candidates[c].ibope_superior, last_i_ibope, i) else: last_i_ibope = i
import models import os import numpy as np import subprocess # xticks = ["17\n11", "18\n07", "08\n06", "09\n10", "09\n17", "09\n24", "10\n01", "10\n05", "10\n06", "10\n08", "10\n15", "10\n22", "10\n26", "10\n27", "10\n29"] xticks = [ "10\n22", "11\n28", "11\n30", "06\n07", "06\n24", "07\n09", "08\n06", "08\n19", "08\n21", "09\n10", "09\n17", "09\n18", "09\n24", "09\n28", "09\n30", "10\n01", "10\n02", "10\n04", "10\n05", "10\n06", "10\n07", "10\n08", "10\n10", "10\n14", "10\n15", "10\n18", "10\n22", "10\n23", "10\n25", "10\n26", "10\n27", "10\n28", "10\n29" ] i_bolsonaro = models.return_index("Jair Bolsonaro") i_haddad = models.return_index("Fernando Haddad") i_lula = models.return_index("Lula") i_ciro = models.return_index("Ciro Gomes") i_marina = models.return_index("Marina Silva") i_alckmin = models.return_index("Geraldo Alckmin") i_alvaro = models.return_index("Alvaro Dias") v_index = [ i_bolsonaro, i_haddad, i_ciro, i_marina, i_alckmin, i_marina, i_alvaro ] error_facebook_1round = [] error_dfolha_1round = [] error_ibope_1round = []
def read_json(comLula): set_empty = True if (comLula == True): with open(os.getcwd() + '\Graphics\Data\PresidentialElection-ComLula.json') as js: poolElection = json.load(js) else: with open(os.getcwd() + '\Graphics\Data\PresidentialElection-SemLula.json') as js: poolElection = json.load(js) for date in dates_graph: vec_data = return_election_by_date(poolElection, date) set_empty = True if (len(vec_data) > 1): set_empty = False for data in vec_data: for candidate in data['candidates']: i = models.return_index(candidate['name']) if (i >= 0): if (data['institute'] == 'DataFolha' or data['institute'] == 'Resultado'): models.data_reader.candidates[i].dfolha_male.append( candidate['gender']['male']) models.data_reader.candidates[i].dfolha_female.append( candidate['gender']['female']) models.data_reader.candidates[i].dfolha_16a24.append( candidate['age_intervals']['age_16_24']) models.data_reader.candidates[i].dfolha_25a34.append( candidate['age_intervals']['age_25_34']) models.data_reader.candidates[i].dfolha_35a44.append( candidate['age_intervals']['age_35_44']) models.data_reader.candidates[i].dfolha_45a54.append( candidate['age_intervals']['age_45_54']) models.data_reader.candidates[i].dfolha_55.append( candidate['age_intervals']['above_55']) models.data_reader.candidates[ i].dfolha_norte_coeste.append( candidate['regions']['north_midwest']) models.data_reader.candidates[ i].dfolha_nordeste.append( candidate['regions']['northeast']) models.data_reader.candidates[i].dfolha_sudeste.append( candidate['regions']['southeast']) models.data_reader.candidates[i].dfolha_sul.append( candidate['regions']['south']) models.data_reader.candidates[ i].dfolha_fundamental.append( candidate['education_status'] ['elementary_school']) models.data_reader.candidates[i].dfolha_medio.append( candidate['education_status']['high_school']) models.data_reader.candidates[i].dfolha_superior.append( candidate['education_status']['higher_education']) elif (set_empty): set_value_empty(True, i) if (data['institute'] == 'IBOPE' or data['institute'] == 'Resultado'): models.data_reader.candidates[i].ibope_male.append( candidate['gender']['male']) models.data_reader.candidates[i].ibope_female.append( candidate['gender']['female']) models.data_reader.candidates[i].ibope_16a24.append( candidate['age_intervals']['age_16_24']) models.data_reader.candidates[i].ibope_25a34.append( candidate['age_intervals']['age_25_34']) models.data_reader.candidates[i].ibope_35a44.append( candidate['age_intervals']['age_35_44']) models.data_reader.candidates[i].ibope_45a54.append( candidate['age_intervals']['age_45_54']) models.data_reader.candidates[i].ibope_55.append( candidate['age_intervals']['above_55']) models.data_reader.candidates[ i].ibope_norte_coeste.append( candidate['regions']['north_midwest']) models.data_reader.candidates[i].ibope_nordeste.append( candidate['regions']['northeast']) models.data_reader.candidates[i].ibope_sudeste.append( candidate['regions']['southeast']) models.data_reader.candidates[i].ibope_sul.append( candidate['regions']['south']) models.data_reader.candidates[ i].ibope_fundamental.append( candidate['education_status'] ['elementary_school']) models.data_reader.candidates[i].ibope_medio.append( candidate['education_status']['high_school']) models.data_reader.candidates[i].ibope_superior.append( candidate['education_status']['higher_education']) elif (set_empty): set_value_empty(False, i) if (len(vec_data) == 0): for candidate in models.data_reader.candidates: set_value_empty(True, models.return_index(candidate.name)) set_value_empty(False, models.return_index(candidate.name)) else: achou = False #Seta empty nos candidatos que não estão na pesquisa for data in vec_data: for candidate in models.data_reader.candidates: for c in data['candidates']: if candidate.name == c["name"]: achou = True break if (achou == False): set_value_empty(True, models.return_index(candidate.name)) set_value_empty(False, models.return_index(candidate.name)) else: achou = False break update_value_empty()