import matplotlib.pyplot as plt import numpy as np import tflearn.datasets.mnist as mnist import sys layers = list(map(int, sys.argv[1:])) neck = layers[-1] layers = layers[:-1] X, Y, testX, testY = mnist.load_data(one_hot=True) # Testing the image reconstruction on new data (test set) #Xes = tflearn.data_utils.shuffle(testX)[0] Xes = tflearn.data_utils.shuffle(testX)[0] d = AutoEncoder(28 * 28, layers, neck) d.load() # Applying encode and decode over test set encode_decode = d.model.predict(Xes) # Compare original images with their reconstructions f, a = plt.subplots(3, 20, figsize=(20, 3)) for i in range(20): a[0][i].imshow(np.reshape(Xes[i], (28, 28)), cmap="hot") a[1][i].imshow(np.reshape(encode_decode[i], (28, 28)), cmap="hot") a[2][i].imshow(np.reshape(Xes[i] - encode_decode[i], (28, 28)), cmap="hot") f.show() plt.draw() plt.waitforbuttonpress()
import numpy as np import tflearn.datasets.mnist as mnist import sys layers = list(map(int, sys.argv[1:])) neck = layers[-1] layers = layers[:-1] X, Y, testX, testY = mnist.load_data(one_hot=True) # Testing the image reconstruction on new data (test set) #Xes = tflearn.data_utils.shuffle(testX)[0] Xes = tflearn.data_utils.shuffle(testX)[0] d = AutoEncoder(28*28, layers, neck) d.load() # Applying encode and decode over test set encode_decode = d.model.predict(Xes) # Compare original images with their reconstructions f, a = plt.subplots(3, 20, figsize=(20, 3)) for i in range(20): a[0][i].imshow(np.reshape(Xes[i], (28, 28)), cmap="hot") a[1][i].imshow(np.reshape(encode_decode[i], (28, 28)), cmap="hot") a[2][i].imshow(np.reshape(Xes[i]-encode_decode[i], (28, 28)), cmap="hot") f.show() plt.draw() plt.waitforbuttonpress()
import tflearn from models import AutoEncoder import matplotlib.pyplot as plt import numpy as np d1 = AutoEncoder(28 * 28, [256], 1) d1.load() decode = d1.decoder() # Compare original images with their reconstructions f, a = plt.subplots(2, 20, figsize=(20, 2)) for i in range(20): x = i / 20.0 a[0][i].imshow(np.reshape(decode([x * 12 - 1]), (28, 28)), cmap="hot") a[1][i].imshow(np.reshape(decode([(x - 0.5) * 20]), (28, 28)), cmap="hot") f.show() plt.draw() plt.waitforbuttonpress()
import tflearn from models import AutoEncoder import matplotlib.pyplot as plt import numpy as np d1 = AutoEncoder(28*28, [256], 1) d1.load() decode = d1.decoder() # Compare original images with their reconstructions f, a = plt.subplots(2, 20, figsize=(20, 2)) for i in range(20): x = i/20.0 a[0][i].imshow(np.reshape(decode([x*12-1]), (28, 28)), cmap="hot") a[1][i].imshow(np.reshape(decode([(x-0.5)*20]), (28, 28)), cmap="hot") f.show() plt.draw() plt.waitforbuttonpress()