Exemple #1
0
def main():
	args = sys.argv
	set_level = args[1]
	train_prob = args[2]
	user_k = int(args[3])
	try:
		top_n = int(args[4])
	except:
		top_n = 500		#输出top500的推荐到文件
	
	#Filepath config
	item_tag_file = './song_dataset/mid_data/song_tag_distribution.json'
	user_tag_file = './song_dataset/mid_data/user_tag_distribution_%s_%s.json'%(set_level,train_prob)
	file_template = './song_dataset/user_dataset_%s_%s_%s'	#set_num,type,train_prob
	train_file = file_template%(set_level,'train',train_prob)
	test_file = file_template%(set_level,'test',train_prob)
	user_sim_file = './song_dataset/mid_data/user_similarity_withTag_%s_%s.json'%(set_level,train_prob)	
	
	#Build dataset
	dataset = BaseDataSet()
	dataset.build_data(train_file,test_file)
	logging.info("Build dataset cost:%s"%(dataset.cost_time))
	
	#Initiate recommender
	recommender = UserTagCF()
	recommender.build_userTagDistribution(dataset.train_data,item_tag_file,user_tag_file)
	recommender.build_user_similarity(dataset.train_data,user_sim_file,top_user_k=1000)		#保留用户的top1000个最相近的用户
	
	#Recommendation
	recommender.recommend(dataset.train_data,user_k=user_k,top_n=top_n)
	logging.info("Train_prob:%s User_k:%s Top_n:%s cost:%s"%(train_prob,user_k,top_n,recommender.cost_time))
Exemple #2
0
def main():
    args = sys.argv
    set_level = args[1]
    train_prob = args[2]
    user_k = int(args[3])
    try:
        top_n = int(args[4])
    except:
        top_n = 500

    #File path config
    file_template = './song_dataset/user_dataset_%s_%s_%s'  #set_num,type,train_prob
    user_sim_file = './song_dataset/mid_data/user_sim_%s_%s.json' % (
        set_level, train_prob)  # user-user simiarity matrix

    train_file = file_template % (set_level, 'train', train_prob)
    test_file = file_template % (set_level, 'test', train_prob)

    #Build dataset
    dataset = BaseDataSet()
    dataset.build_data(train_file, test_file)
    logging.info("Build dataset cost:%s" % (dataset.cost_time))

    #Initiate Recommender
    recommender = UserCF()
    recommender.build_user_similarity(
        dataset.train_data, user_sim_file,
        top_user_k=1000)  #Top_user_k represent keep top k sim_user to file

    #Recommendation
    recommender.recommend(dataset.train_data, user_k=user_k, top_n=top_n)
    logging.info("Train_prob:%s User_k:%s Top_n:%s cost:%s" %
                 (train_prob, user_k, top_n, recommender.cost_time))
Exemple #3
0
def main():
	args = sys.argv
	set_level = args[1]
	train_prob = args[2]
	user_k = int(args[3])
	try:
		top_n = int(args[4])
	except:
		top_n = 500

	#File path config
	file_template = './song_dataset/user_dataset_%s_%s_%s'	#set_num,type,train_prob
	user_sim_file = './song_dataset/mid_data/user_sim_%s_%s.json'%(set_level,train_prob)	# user-user simiarity matrix
	
	train_file = file_template%(set_level,'train',train_prob)
	test_file = file_template%(set_level,'test',train_prob)

	#Build dataset
	dataset = BaseDataSet()
	dataset.build_data(train_file,test_file)
	logging.info("Build dataset cost:%s"%(dataset.cost_time))
	
	#Initiate Recommender
	recommender = UserCF()
	recommender.build_user_similarity(dataset.train_data,user_sim_file,top_user_k=1000)	#Top_user_k represent keep top k sim_user to file
	
	#Recommendation
	recommender.recommend(dataset.train_data,user_k=user_k,top_n=top_n)
	logging.info("Train_prob:%s User_k:%s Top_n:%s cost:%s"%(train_prob,user_k,top_n,recommender.cost_time))
Exemple #4
0
def main():
	args = sys.argv
	set_level = args[1]
	train_prob = args[2]
	top_n = int(args[3])
	
	#Filepath config
	item_tag_file = './song_dataset/mid_data/song_tag_distribution.json'
	#item_tag_file = './song_dataset/mid_data/song_tag_dist_with_singer.json'
	user_tag_file = './song_dataset/mid_data/user_tag_distribution_%s_%s.json'%(set_level,train_prob)
	file_template = './song_dataset/user_dataset_%s_%s_%s'	#set_num,type,train_prob
	train_file = file_template%(set_level,'train',train_prob)
	test_file = file_template%(set_level,'test',train_prob)
	user_sim_file = './song_dataset/mid_data/user_similarity_withTag_%s_%s.json'%(set_level,train_prob)
	
	#Build dataset
	dataset = BaseDataSet()
	dataset.build_data(train_file,test_file)
	logging.info("Build dataset cost:%s"%(dataset.cost_time))
	print "DataForTrain: %s"%(train_file)
	print "DataForTest: %s"%(test_file)
	print "Dataset train_set info: %s"%(dataset.get_train_info())
	print "Dataset test_set info: %s"%(dataset.get_test_info())

	#Record best scores
	best_f_score = {'f_score':0}
	best_precision = {'precision':0}
	best_recall = {'recall':0}
	
	#Initiate recommender
	recommender = UserTagCF()
	recommender.build_userTagDistribution(dataset.train_data,item_tag_file,user_tag_file)
	recommender.build_user_similarity(dataset.train_data,user_sim_file,top_user_k=1000)
	
	#Recommendation
	for user_k in [5]+range(10,101,10):
		recommender.recommend(dataset.train_data,user_k=user_k,top_n=top_n)
		logging.info("Train_prob:%s User_k:%s Top_n:%s cost:%s"%(train_prob,user_k,top_n,recommender.cost_time))
		scores = recommender.score(dataset.test_data,len(dataset.all_songs))
		print "User_k:%s\tTop_n:%s\tScores:%s"%(user_k,top_n,scores)

		#Find Best Score
		if scores['f_score'] > best_f_score['f_score']:
			best_f_score = scores
			best_f_score['user_k'] = user_k
			best_f_score['top_n'] = top_n
		if scores['precision'] > best_precision['precision']:
			best_precision = scores
			best_precision['user_k']=user_k
			best_precision['top_n'] = top_n
		if scores['recall'] > best_recall['recall']:
			best_recall = scores
			best_recall['user_k']=user_k
			best_recall['top_n'] = top_n
	
	print "Best_F_Score: %s"%(best_f_score)
	print "Best_Precision: %s"%(best_precision)
	print "Best_Recall: %s"%(best_recall)
Exemple #5
0
def main():
	args = sys.argv
	set_level = args[1]
	train_prob = args[2]
	topic_num = int(args[3])
	recommend_job = args[4]
	user_k = int(args[5])
	try:
		top_n = int(args[6])
	except:
		top_n = 500
	
	#Log config
	log_file = './log/hybirdModel_%s_%s_%s_%s_%s.log'%(set_level,train_prob,topic_num,recommend_job,top_n)
	logging.basicConfig(level=logging.INFO,format='%(asctime)s %(levelname)s %(funcName)s %(lineno)d %(message)s',filename=log_file)
	
	#Filepath config
	file_template = './song_dataset/user_dataset_%s_%s_%s' #set_level, type, train_prob
	user_sim_file = './song_dataset/mid_data/user_sim_%s_%s.json'%(set_level,train_prob)
	userTag_sim_file = './song_dataset/mid_data/user_similarity_withTag_%s_%s.json'%(set_level,train_prob)
	userLDA_sim_file = './song_dataset/mid_data/user_sim_with_lda_%s_%s_%s.json'%(set_level,train_prob,topic_num)
	train_file = file_template%(set_level,'train',train_prob)
	test_file = file_template%(set_level,'test', train_prob)
	
	#Build dataset
	dataset = BaseDataSet()
	dataset.build_data(train_file,test_file)
	logging.info("Build dataset cost:%s"%(dataset.cost_time))

	#Data Preparation
	items_tag_dict = {}
	users_tag_dict = {}
	if recommend_job in ('mix_result_reorder','mix_sim_reorder'):
		items_tag_dict = load_tag_distribution('./song_dataset/mid_data/song_tag_distribution.json')	#Load item_tag_distrib
		user_tag_file = './song_dataset/mid_data/user_tag_distribution_%s_%s.json'%(set_level,train_prob)
		users_tag_dict = load_tag_distribution(user_tag_file)

	#Initiate Hybird-Model
	recommender = HybirdModel()
	if recommend_job in ('mix_sim','mix_sim_reorder'):
		recommender.hybird_user_sim(dataset.train_data,userTag_sim_file,userLDA_sim_file,theta=0.45)
	elif recommend_job in ('mix_result','mix_result_reorder'):
		recommender.userTag.load_user_similarity(userTag_sim_file,norm=1)
		recommender.userLda.load_user_similarity(userLDA_sim_file,norm=1)

	if recommend_job == 'mix_sim':
		recommender.recommend(dataset.train_data,users_tag_dict,items_tag_dict,user_k,top_n,reorder=0)
	elif recommend_job == 'mix_sim_reorder':
		recommender.recommend(dataset.train_data,users_tag_dict,items_tag_dict,user_k,top_n,reorder=1)
	elif recommend_job == 'mix_result':
		recommender.hybird_recommend_result(dataset.train_data,user_k,top_n)
	elif recommend_job == 'mix_result_reorder':
		recommender.hybird_result_withReorder(dataset.train_data,users_tag_dict,items_tag_dict,user_k,top_n)
	logging.info("Train_prob:%s User_k:%s Top_n:%s cost:%s"%(train_prob,user_k,top_n,recommender.cost_time))
Exemple #6
0
def main():
	args = sys.argv
	set_level = args[1]
	train_prob = args[2]
	dataset = BaseDataSet()
	file_template = './song_dataset/user_dataset_%s_%s_%s'	#set_level,type,train_prob
		
	train_file = file_template%(set_level,'train',train_prob)
	test_file = file_template%(set_level,'test',train_prob)
	dataset.build_data(train_file,test_file)
	logging.info("Build dataset cost:%s",dataset.cost_time)

	recommender = RandomSelect()
	recommender.recommend(dataset.train_data,list(dataset.all_songs),500)
	logging.info("Train_prob:%s cost:%s"%(train_prob,recommender.get_time()))
Exemple #7
0
def main():
    args = sys.argv
    set_level = args[1]
    train_prob = args[2]
    dataset = BaseDataSet()
    file_template = './song_dataset/user_dataset_%s_%s_%s'  #set_levle,type,train_prob

    train_file = file_template % (set_level, 'train', train_prob)
    test_file = file_template % (set_level, 'test', train_prob)
    dataset.build_data(train_file, test_file)
    logging.info("Build dataset cost:%s", dataset.cost_time)

    #Initiate Recommender
    recommender = Popularity()
    recommender.recommend(dataset.train_data, 500)
    logging.info("Train_prob:%s cost:%s" % (train_prob, recommender.cost_time))
Exemple #8
0
def main():
	args = sys.argv
	set_level = args[1]
	train_prob = args[2]
	dataset = BaseDataSet()
	file_template = './song_dataset/user_dataset_%s_%s_%s'	#set_levle,type,train_prob

	train_file = file_template%(set_level,'train',train_prob)
	test_file = file_template%(set_level,'test',train_prob)
	dataset.build_data(train_file,test_file)
	logging.info("Build dataset cost:%s",dataset.cost_time)

	#Initiate Recommender
	recommender = Popularity()
	recommender.recommend(dataset.train_data,500)
	logging.info("Train_prob:%s cost:%s"%(train_prob,recommender.cost_time))
Exemple #9
0
def main():
	args = sys.argv
	set_level = args[1]
	train_prob = args[2]
	e_type = args[3]	#Experiment type: song or playlist
	dataset = BaseDataSet()
	file_template = './song_dataset/user_dataset_%s_%s_%s'	#set_levle,type,train_prob
	if e_type == 'playlist':
		file_template = './pl_dataset/user_playlist_%s_%s_%s'	#set_levle,type,train_prob

	train_file = file_template%(set_level,'train',train_prob)
	test_file = file_template%(set_level,'test',train_prob)
	dataset.build_data(train_file,test_file)
	logging.info("Build dataset cost:%s",dataset.cost_time)
	print "DataForTrain: %s"%(train_file)
	print "DataForTest: %s"%(test_file)
	print "Dataset train_set info: %s"%(dataset.get_train_info())
	print "Dataset test_set info: %s"%(dataset.get_test_info())

	#Record best scores
	best_f_score = {'f_score':0}
	best_precision = {'precision':0}
	best_recall = {'recall':0}

	#Initiate Recommender
	recommender = Popularity()
	for i in [1,50,100,150,200]:
		recommender.recommend(dataset.train_data,i)
		logging.info("Train_prob:%s Recommend Top_n:%s cost:%s"%(train_prob,i,recommender.cost_time))
		#logging.info("Top_10_song:%s"%(recommender.get_poplist(10)))
		scores = recommender.score(dataset.test_data)
		print "Top_n:%s\tScores:%s"%(i,scores)

		#Find best scores
		if scores['f_score'] > best_f_score['f_score']:
			best_f_score = scores
			best_f_score['top_n'] = i
		if scores['precision'] > best_precision['precision']:
			best_precision = scores
			best_precision['top_n'] = i
		if scores['recall'] > best_recall['recall']:
			best_recall = scores
			best_recall['top_n'] = i
	
	print "Best_F_Score: %s"%(best_f_score)
	print "Best_Precision: %s"%(best_precision)
	print "Best_Recall: %s"%(best_recall)
Exemple #10
0
def get_lda_topics(args):
	set_level = args[0]
	train_prob = args[1]
	topic_num = int(args[2])

	file_template = './song_dataset/user_dataset_%s_%s_%s' #set_level, type, train_prob
	train_file = file_template%(set_level,'train',train_prob)
	test_file = file_template%(set_level,'test',train_prob)
	
	dataset = BaseDataSet()
	dataset.build_data(train_file,test_file)

	recommender = UserLDA()
	recommender.build_model(dataset.train_data,topic_num)
	for idx,distrib in enumerate(recommender.model.print_topics(1000)):
		dist0 = distrib.split()[0].split('*')[0]
		if float(dist0) > 0:
			print "Topic#%s\t%s"%(idx,distrib)
Exemple #11
0
def main():
    args = sys.argv
    set_level = args[1]
    train_prob = args[2]
    topic_num = int(args[3])
    user_k = int(args[4])
    try:
        top_n = int(args[5])
    except:
        top_n = 500

    #Log-Config
    logfile = './log/userLDA_%s_%s_%s.log' % (set_level, train_prob, topic_num)
    logging.basicConfig(
        level=logging.INFO,
        format='%(asctime)s %(levelname)s %(funcName)s %(lineno)d %(message)s',
        filename=logfile)
    #logging.basicConfig(level=logging.INFO,format='%(asctime)s %(levelname)s %(funcName)s %(lineno)d %(message)s')

    #File path config
    user_sim_file = './song_dataset/mid_data/user_sim_with_lda_%s_%s_%s.json' % (
        set_level, train_prob, topic_num)
    file_template = './song_dataset/user_dataset_%s_%s_%s'  #set_level, type, train_prob
    train_file = file_template % (set_level, 'train', train_prob)
    test_file = file_template % (set_level, 'test', train_prob)

    #Build dataset
    dataset = BaseDataSet()
    dataset.build_data(train_file, test_file)
    logging.info("Build dataset cost:%s" % (dataset.cost_time))

    #Initiate Recommender
    recommender = UserLDA()
    recommender.build_user_similarity(user_sim_file,
                                      dataset.train_data,
                                      topic_num=topic_num,
                                      top_user_k=300)

    #Recommendation
    recommender.recommend(dataset.train_data, user_k=user_k, top_n=top_n)
    logging.info("Train_prob:%s User_k:%s Top_n:%s cost:%s" %
                 (train_prob, user_k, top_n, recommender.cost_time))
Exemple #12
0
def main():
    args = sys.argv
    set_level = args[1]
    train_prob = args[2]
    kn = int(args[3])

    #File path config
    file_template = './song_dataset/user_dataset_%s_%s_%s'  #set_num,type,train_prob
    train_file = file_template % (set_level, 'train', train_prob)
    test_file = file_template % (set_level, 'test', train_prob)

    #Build dataset
    dataset = BaseDataSet()
    dataset.build_data(train_file, test_file)
    logging.info("Build dataset cost:%s" % (dataset.cost_time))

    #Initiate Recommender
    recommender = SVDModel()
    recommender.build_model(dataset.train_data, kn)
    recommender.recommend(dataset.train_data)
Exemple #13
0
def main():
	args = sys.argv
	set_level = args[1]
	train_prob = args[2]
	kn = int(args[3])
	
	#File path config
	file_template = './song_dataset/user_dataset_%s_%s_%s'	#set_num,type,train_prob
	train_file = file_template%(set_level,'train',train_prob)
	test_file = file_template%(set_level,'test',train_prob)

	#Build dataset
	dataset = BaseDataSet()
	dataset.build_data(train_file,test_file)
	logging.info("Build dataset cost:%s"%(dataset.cost_time))
	
	#Initiate Recommender
	recommender = SVDModel()
	recommender.build_model(dataset.train_data,kn)
	recommender.recommend(dataset.train_data)
Exemple #14
0
def main():
	args = sys.argv
	set_level = args[1]
	train_prob = args[2]
	top_n = int(args[3])

	#File path config
	file_template = './song_dataset/user_dataset_%s_%s_%s'	#set_num,type,train_prob
	user_sim_file = './song_dataset/mid_data/user_sim_%s_%s.json'%(set_level,train_prob)	# user-user simiarity matrix
	
	train_file = file_template%(set_level,'train',train_prob)
	test_file = file_template%(set_level,'test',train_prob)

	#Build dataset
	dataset = BaseDataSet()
	dataset.build_data(train_file,test_file)
	logging.info("Build dataset cost:%s"%(dataset.cost_time))
	print "DataForTrain: %s"%(train_file)
	print "DataForTest: %s"%(test_file)
	print "Dataset train_set info: %s"%(dataset.get_train_info())
	print "Dataset test_set info: %s"%(dataset.get_test_info())
	
	#Record best scores
	best_f_score = {'f_score':0}
	best_precision = {'precision':0}
	best_recall = {'recall':0}

	#Initiate Recommender
	recommender = UserCF()
	recommender.build_user_similarity(dataset.train_data,user_sim_file,top_user_k=1000)	#Top_user_k represent keep top k sim_user to file
	
	#Recommendation
	for user_k in [5]+range(10,101,10):
		recommender.recommend(dataset.train_data,user_k=user_k,top_n=top_n)
		logging.info("Train_prob:%s User_k:%s Top_n:%s cost:%s"%(train_prob,user_k,top_n,recommender.cost_time))
		scores = recommender.score(dataset.test_data,len(dataset.all_songs))
		print "User_k:%s\tTop_n:%s\tScores:%s"%(user_k,top_n,scores)

		#Find Best Score
		if scores['f_score'] > best_f_score['f_score']:
			best_f_score = scores
			best_f_score['user_k'] = user_k
			best_f_score['top_n'] = top_n
		if scores['precision'] > best_precision['precision']:
			best_precision = scores
			best_precision['user_k']=user_k
			best_precision['top_n'] = top_n
		if scores['recall'] > best_recall['recall']:
			best_recall = scores
			best_recall['user_k']=user_k
			best_recall['top_n'] = top_n
	
	print "Best_F_Score: %s"%(best_f_score)
	print "Best_Precision: %s"%(best_precision)
	print "Best_Recall: %s"%(best_recall)
Exemple #15
0
def main():
    args = sys.argv
    set_level = args[1]
    train_prob = args[2]
    e_type = args[3]  #Experiment type: song or playlist
    dataset = BaseDataSet()
    file_template = './song_dataset/user_dataset_%s_%s_%s'  #set_levle,type,train_prob
    if e_type == 'playlist':
        file_template = './pl_dataset/user_playlist_%s_%s_%s'  #set_levle,type,train_prob

    train_file = file_template % (set_level, 'train', train_prob)
    test_file = file_template % (set_level, 'test', train_prob)
    dataset.build_data(train_file, test_file)
    logging.info("Build dataset cost:%s", dataset.cost_time)
    print "DataForTrain: %s" % (train_file)
    print "DataForTest: %s" % (test_file)
    print "Dataset train_set info: %s" % (dataset.get_train_info())
    print "Dataset test_set info: %s" % (dataset.get_test_info())

    #Record best scores
    best_f_score = {'f_score': 0}
    best_precision = {'precision': 0}
    best_recall = {'recall': 0}

    #Initiate Recommender
    recommender = Popularity()
    for i in [1, 50, 100, 150, 200]:
        recommender.recommend(dataset.train_data, i)
        logging.info("Train_prob:%s Recommend Top_n:%s cost:%s" %
                     (train_prob, i, recommender.cost_time))
        #logging.info("Top_10_song:%s"%(recommender.get_poplist(10)))
        scores = recommender.score(dataset.test_data)
        print "Top_n:%s\tScores:%s" % (i, scores)

        #Find best scores
        if scores['f_score'] > best_f_score['f_score']:
            best_f_score = scores
            best_f_score['top_n'] = i
        if scores['precision'] > best_precision['precision']:
            best_precision = scores
            best_precision['top_n'] = i
        if scores['recall'] > best_recall['recall']:
            best_recall = scores
            best_recall['top_n'] = i

    print "Best_F_Score: %s" % (best_f_score)
    print "Best_Precision: %s" % (best_precision)
    print "Best_Recall: %s" % (best_recall)
Exemple #16
0
 def __init__(self):
     BaseDataSet.__init__(self)
     self.playlists = []
Exemple #17
0
def main():
	args = sys.argv
	set_level = args[1]
	train_prob = args[2]
	topic_num = int(args[3])
	top_n = int(args[4])
	e_type = args[5]	#e_type: song or playlist
	
	#Log-Config
	logfile = './log/userLDA_%s_%s_%s.log'%(set_level,train_prob,topic_num)
	logging.basicConfig(level=logging.INFO,format='%(asctime)s %(levelname)s %(funcName)s %(lineno)d %(message)s',filename=logfile,filemode='w')
	#logging.basicConfig(level=logging.INFO,format='%(asctime)s %(levelname)s %(funcName)s %(lineno)d %(message)s')
	
	#File path config
	user_sim_file = './song_dataset/mid_data/user_sim_with_lda_%s_%s_%s_new.json'%(set_level,train_prob,topic_num)
	file_template = './song_dataset/user_dataset_%s_%s_%s' #set_level, type, train_prob
	if e_type == 'playlist':
		user_sim_file = './pl_dataset/mid_data/user_sim_with_lda_%s_%s_%s.json'%(set_level,train_prob,topic_num)
		file_template = './pl_dataset/user_playlist_%s_%s_%s' #set_level, type, train_prob
	train_file = file_template%(set_level,'train',train_prob)
	test_file = file_template%(set_level,'test',train_prob)
	
	#Build dataset
	dataset = BaseDataSet()
	dataset.build_data(train_file,test_file)
	logging.info("Build dataset cost:%s"%(dataset.cost_time))
	print "DataForTrain: %s"%(train_file)
	print "DataForTest: %s"%(test_file)
	print "Dataset train_set info: %s"%(dataset.get_train_info())
	print "Dataset test_set info: %s"%(dataset.get_test_info())
	
	#Record best scores
	best_f_score = {'f_score':0}
	best_precision = {'precision':0}
	best_recall = {'recall':0}
	
	#Initiate Recommender
	recommender = UserLDA()
	recommender.build_user_similarity(user_sim_file,dataset.train_data,topic_num=topic_num, top_user_k=1000)
	
	#Recommendation
	for user_k in [5]+range(10,101,10):
		recommender.recommend(dataset.train_data,user_k=user_k,top_n=top_n)
		logging.info("Train_prob:%s User_k:%s Top_n:%s cost:%s"%(train_prob,user_k,top_n,recommender.cost_time))
		scores = recommender.score(dataset.test_data,len(dataset.all_songs))
		print "User_k:%s\tTop_n:%s\tScores:%s"%(user_k,top_n,scores)

		#Find Best Score
		if scores['f_score'] > best_f_score['f_score']:
			best_f_score = scores
			best_f_score['user_k'] = user_k
			best_f_score['top_n'] = top_n
		if scores['precision'] > best_precision['precision']:
			best_precision = scores
			best_precision['user_k']=user_k
			best_precision['top_n'] = top_n
		if scores['recall'] > best_recall['recall']:
			best_recall = scores
			best_recall['user_k']=user_k
			best_recall['top_n'] = top_n
	
	print "Best_F_Score: %s"%(best_f_score)
	print "Best_Precision: %s"%(best_precision)
	print "Best_Recall: %s"%(best_recall)
Exemple #18
0
def main():
    args = sys.argv
    set_level = args[1]
    train_prob = args[2]
    top_n = int(args[3])
    e_type = args[4]  #Experiment type: song or playlist

    #Filepath config
    file_template = './song_dataset/user_dataset_%s_%s_%s'  #set_num,type,train_prob
    item_sim_file = './song_dataset/mid_data/item_similarity_%s_%s.json' % (
        set_level, train_prob)
    if e_type == 'playlist':
        file_template = './pl_dataset/user_playlist_%s_%s_%s'  #set_num,type,train_prob
        item_sim_file = './pl_dataset/mid_data/item_similarity_%s_%s.json' % (
            set_level, train_prob)

    train_file = file_template % (set_level, 'train', train_prob)
    test_file = file_template % (set_level, 'test', train_prob)

    #Build dataset
    dataset = BaseDataSet()
    dataset.build_data(train_file, test_file)
    logging.info("Build dataset cost:%s" % (dataset.cost_time))

    print "DataForTrain: %s" % (train_file)
    print "DataForTest: %s" % (test_file)
    print "Dataset train_set info: %s" % (dataset.get_train_info())
    print "Dataset test_set info: %s" % (dataset.get_test_info())

    #Record best scores
    best_f_score = {'f_score': 0}
    best_precision = {'precision': 0}
    best_recall = {'recall': 0}

    #Initiate recommender
    itemCF_recommender = ItemCF()
    if os.path.exists(item_sim_file):
        logging.info("File %s exists, loading item similarity matrix" %
                     (item_sim_file))
        itemCF_recommender.load_item_similarity(item_sim_file)
        logging.info("Load item_similarity cost: %s" %
                     (itemCF_recommender.cost_time))
    else:
        logging.info("File %s doesn't exist, building item similarity matrix" %
                     (item_sim_file))
        itemCF_recommender.build_item_similarity(dataset.train_data,
                                                 item_sim_file)
        logging.info("Load item_similarity cost: %s" %
                     (itemCF_recommender.cost_time))

    #Recommendation
    for item_k in range(20, 100):
        itemCF_recommender.recommend(dataset.train_data,
                                     item_k=item_k,
                                     top_n=top_n)
        logging.info("Train_prob:%s Item_k:%s Top_n:%s Cost:%s" %
                     (train_prob, item_k, top_n, itemCF_recommender.cost_time))
        scores = itemCF_recommender.score(dataset.test_data)
        print "Item_k:%s\tTop_n:%s\tScores:%s" % (item_k, top_n, scores)

        #Find Best Score
        if scores['f_score'] > best_f_score['f_score']:
            best_f_score = scores
            best_f_score['item_k'] = item_k
            best_f_score['top_n'] = top_n
        if scores['precision'] > best_precision['precision']:
            best_precision = scores
            best_precision['item_k'] = item_k
            best_precision['top_n'] = top_n
        if scores['recall'] > best_recall['recall']:
            best_recall = scores
            best_recall['item_k'] = item_k
            best_recall['top_n'] = top_n

    print "Best_F_Score: %s" % (best_f_score)
    print "Best_Precision: %s" % (best_precision)
    print "Best_Recall: %s" % (best_recall)
Exemple #19
0
def main():
    args = sys.argv
    set_level = args[1]
    train_prob = args[2]
    hybird_type = args[3]
    recommend_job = args[4]
    user_k = int(args[5])
    top_n = int(args[6])
    if hybird_type == 'lda':
        topic_num = int(args[7])

    #Log config
    log_file = './log/ubase_hybirdModel_%s_%s_%s_%s.log' % (
        set_level, train_prob, recommend_job, top_n)
    logging.basicConfig(
        level=logging.INFO,
        format='%(asctime)s %(levelname)s %(funcName)s %(lineno)d %(message)s',
        filename=log_file,
        filemode='w')
    #logging.basicConfig(level=logging.INFO,format='%(asctime)s %(levelname)s %(funcName)s %(lineno)d %(message)s')

    #Filepath config
    file_template = './song_dataset/user_dataset_%s_%s_%s'  #set_level, type, train_prob
    user_sim_file = './song_dataset/mid_data/user_sim_%s_%s.json' % (
        set_level, train_prob)  #Similarity file of userCF
    if hybird_type == 'tag':
        userTag_sim_file = './song_dataset/mid_data/user_similarity_withTag_%s_%s.json' % (
            set_level, train_prob)
    if hybird_type == 'lda':
        userLDA_sim_file = './song_dataset/mid_data/user_sim_with_lda_%s_%s_%s.json' % (
            set_level, train_prob, topic_num)
    train_file = file_template % (set_level, 'train', train_prob)
    test_file = file_template % (set_level, 'test', train_prob)

    #Build dataset
    dataset = BaseDataSet()
    dataset.build_data(train_file, test_file)
    logging.info("Build dataset cost:%s" % (dataset.cost_time))

    #Data Preparation
    items_tag_dict = {}
    users_tag_dict = {}
    if recommend_job in ('mix_result_reorder', 'mix_sim_reorder'):
        items_tag_dict = load_tag_distribution(
            './song_dataset/mid_data/song_tag_distribution.json'
        )  #Load item_tag_distrib
        user_tag_file = './song_dataset/mid_data/user_tag_distribution_%s_%s.json' % (
            set_level, train_prob)
        users_tag_dict = load_tag_distribution(user_tag_file)

    #Initiate Hybird-Model
    recommender = HybirdModel_UB()
    if recommend_job in ('mix_sim', 'mix_sim_reorder'):
        if hybird_type == 'tag':
            recommender.hybird_user_sim(dataset.train_data,
                                        user_sim_file,
                                        userTag_sim_file,
                                        hybird_type='tag',
                                        theta=0.8,
                                        mix_type=0)
        elif hybird_type == 'lda':
            recommender.hybird_user_sim(dataset.train_data,
                                        user_sim_file,
                                        userLDA_sim_file,
                                        hybird_type='lda',
                                        theta=0.9,
                                        mix_type=0)
    elif recommend_job in ('mix_result', 'mix_result_reorder'):
        if hybird_type == 'tag':
            recommender.userTag.load_user_similarity(userTag_sim_file, norm=1)
        elif hybird_type == 'lda':
            recommender.userLda.load_user_similarity(userLDA_sim_file, norm=1)

    if recommend_job == 'mix_sim':
        recommender.recommend(dataset.train_data,
                              users_tag_dict,
                              items_tag_dict,
                              user_k,
                              top_n,
                              reorder=0)
    elif recommend_job == 'mix_sim_reorder':
        recommender.recommend(dataset.train_data,
                              users_tag_dict,
                              items_tag_dict,
                              user_k,
                              top_n,
                              reorder=1)
    elif recommend_job == 'mix_result':
        recommender.hybird_recommend_result(dataset.train_data, user_k, top_n)
    elif recommend_job == 'mix_result_reorder':
        recommender.hybird_result_withReorder(dataset.train_data,
                                              users_tag_dict, items_tag_dict,
                                              user_k, top_n)
    logging.info("Train_prob:%s User_k:%s Top_n:%s cost:%s" %
                 (train_prob, user_k, top_n, recommender.cost_time))
Exemple #20
0
def main():
	args = sys.argv
	set_level = args[1]
	train_prob = args[2]
	topic_num = int(args[3])
	top_n = int(args[4])
	recommend_job = args[5]
	
	#Log config
	log_file = './log/hybirdModel_%s_%s_%s_%s_%s.log'%(set_level,train_prob,topic_num,recommend_job,top_n)
	logging.basicConfig(level=logging.INFO,format='%(asctime)s %(levelname)s %(funcName)s %(lineno)d %(message)s',filename=log_file,filemode='w')
	
	#Filepath config
	file_template = './song_dataset/user_dataset_%s_%s_%s' #set_level, type, train_prob
	user_sim_file = './song_dataset/mid_data/user_sim_%s_%s.json'%(set_level,train_prob)
	userTag_sim_file = './song_dataset/mid_data/user_similarity_withTag_%s_%s.json'%(set_level,train_prob)
	userLDA_sim_file = './song_dataset/mid_data/user_sim_with_lda_%s_%s_%s.json'%(set_level,train_prob,topic_num)
	train_file = file_template%(set_level,'train',train_prob)
	test_file = file_template%(set_level,'test', train_prob)
	
	#Build dataset
	dataset = BaseDataSet()
	dataset.build_data(train_file,test_file)
	logging.info("Build dataset cost:%s"%(dataset.cost_time))
	print "DataForTrain: %s"%(train_file)
	print "DataForTest: %s"%(test_file)
	print "Dataset train_set info: %s"%(dataset.get_train_info())
	print "Dataset test_set info: %s"%(dataset.get_test_info())

	#Record best scores
	best_f_score = {'f_score':0}
	best_precision = {'precision':0}
	best_recall = {'recall':0}

	#Data Preparation
	items_tag_dict = {}
	users_tag_dict = {}
	if recommend_job in ('mix_result_reorder','mix_sim_reorder'):
		items_tag_dict = load_tag_distribution('./song_dataset/mid_data/song_tag_distribution.json')	#Load item_tag_distrib
		user_tag_file = './song_dataset/mid_data/user_tag_distribution_%s_%s.json'%(set_level,train_prob)
		users_tag_dict = load_tag_distribution(user_tag_file)

	#Initiate Hybird-Model
	recommender = HybirdModel()
	if recommend_job in ('mix_sim','mix_sim_reorder'):
		recommender.hybird_user_sim(dataset.train_data,userTag_sim_file,userLDA_sim_file,theta=0.45)
	elif recommend_job in ('mix_result','mix_result_reorder'):
		recommender.userTag.load_user_similarity(userTag_sim_file,norm=1)
		recommender.userLda.load_user_similarity(userLDA_sim_file,norm=1)

	for user_k in [5]+range(10,101,10):
		if recommend_job == 'mix_sim':
			recommender.recommend(dataset.train_data,users_tag_dict,items_tag_dict,user_k,top_n,reorder=0)
		elif recommend_job == 'mix_sim_reorder':
			recommender.recommend(dataset.train_data,users_tag_dict,items_tag_dict,user_k,top_n,reorder=1)
		elif recommend_job == 'mix_result':
			recommender.hybird_recommend_result(dataset.train_data,user_k,top_n)
		elif recommend_job == 'mix_result_reorder':
			recommender.hybird_result_withReorder(dataset.train_data,users_tag_dict,items_tag_dict,user_k,top_n)
		logging.info("Train_prob:%s User_k:%s Top_n:%s cost:%s"%(train_prob,user_k,top_n,recommender.cost_time))
		scores = recommender.score(dataset.test_data,len(dataset.all_songs))
		print "User_k:%s\tTop_n:%s\tScores:%s"%(user_k,top_n,scores)

		#Find Best Score
		if scores['f_score'] > best_f_score['f_score']:
			best_f_score = scores
			best_f_score['user_k'] = user_k
			best_f_score['top_n'] = top_n
		if scores['precision'] > best_precision['precision']:
			best_precision = scores
			best_precision['user_k']=user_k
			best_precision['top_n'] = top_n
		if scores['recall'] > best_recall['recall']:
			best_recall = scores
			best_recall['user_k']=user_k
			best_recall['top_n'] = top_n
	
	print "Best_F_Score: %s"%(best_f_score)
	print "Best_Precision: %s"%(best_precision)
	print "Best_Recall: %s"%(best_recall)
Exemple #21
0
def main():
	args = sys.argv
	set_level = args[1]
	train_prob = args[2]
	top_n = int(args[3])
	e_type = args[4]	#Experiment type: song or playlist
	
	#Filepath config
	file_template = './song_dataset/user_dataset_%s_%s_%s'	#set_num,type,train_prob
	item_sim_file = './song_dataset/mid_data/item_similarity_%s_%s.json'%(set_level,train_prob)
	if e_type == 'playlist':
		file_template = './pl_dataset/user_playlist_%s_%s_%s'	#set_num,type,train_prob
		item_sim_file = './pl_dataset/mid_data/item_similarity_%s_%s.json'%(set_level,train_prob)
		
	train_file = file_template%(set_level,'train',train_prob)
	test_file = file_template%(set_level,'test',train_prob)

	#Build dataset
	dataset = BaseDataSet()
	dataset.build_data(train_file,test_file)
	logging.info("Build dataset cost:%s"%(dataset.cost_time))

	print "DataForTrain: %s"%(train_file)
	print "DataForTest: %s"%(test_file)
	print "Dataset train_set info: %s"%(dataset.get_train_info())
	print "Dataset test_set info: %s"%(dataset.get_test_info())
	
	#Record best scores
	best_f_score = {'f_score':0}
	best_precision = {'precision':0}
	best_recall = {'recall':0}

	#Initiate recommender
	itemCF_recommender = ItemCF()
	if os.path.exists(item_sim_file):
		logging.info("File %s exists, loading item similarity matrix"%(item_sim_file))
		itemCF_recommender.load_item_similarity(item_sim_file)
		logging.info("Load item_similarity cost: %s"%(itemCF_recommender.cost_time))
	else:
		logging.info("File %s doesn't exist, building item similarity matrix"%(item_sim_file))
		itemCF_recommender.build_item_similarity(dataset.train_data,item_sim_file)
		logging.info("Load item_similarity cost: %s"%(itemCF_recommender.cost_time))
	
	#Recommendation
	for item_k in range(20,100):
		itemCF_recommender.recommend(dataset.train_data,item_k=item_k,top_n=top_n)
		logging.info("Train_prob:%s Item_k:%s Top_n:%s Cost:%s"%(train_prob,item_k,top_n,itemCF_recommender.cost_time))
		scores = itemCF_recommender.score(dataset.test_data)
		print "Item_k:%s\tTop_n:%s\tScores:%s"%(item_k,top_n,scores)

		#Find Best Score
		if scores['f_score'] > best_f_score['f_score']:
			best_f_score = scores
			best_f_score['item_k'] = item_k
			best_f_score['top_n'] = top_n
		if scores['precision'] > best_precision['precision']:
			best_precision = scores
			best_precision['item_k']=item_k
			best_precision['top_n'] = top_n
		if scores['recall'] > best_recall['recall']:
			best_recall = scores
			best_recall['item_k']=item_k
			best_recall['top_n'] = top_n
	
	print "Best_F_Score: %s"%(best_f_score)
	print "Best_Precision: %s"%(best_precision)
	print "Best_Recall: %s"%(best_recall)
Exemple #22
0
def main():
    args = sys.argv
    set_level = args[1]
    train_prob = args[2]
    topic_num = int(args[3])
    top_n = int(args[4])
    recommend_job = args[5]

    #Log config
    log_file = './log/hybirdModel_%s_%s_%s_%s_%s.log' % (
        set_level, train_prob, topic_num, recommend_job, top_n)
    logging.basicConfig(
        level=logging.INFO,
        format='%(asctime)s %(levelname)s %(funcName)s %(lineno)d %(message)s',
        filename=log_file,
        filemode='w')

    #Filepath config
    file_template = './song_dataset/user_dataset_%s_%s_%s'  #set_level, type, train_prob
    user_sim_file = './song_dataset/mid_data/user_sim_%s_%s.json' % (
        set_level, train_prob)
    userTag_sim_file = './song_dataset/mid_data/user_similarity_withTag_%s_%s.json' % (
        set_level, train_prob)
    userLDA_sim_file = './song_dataset/mid_data/user_sim_with_lda_%s_%s_%s.json' % (
        set_level, train_prob, topic_num)
    train_file = file_template % (set_level, 'train', train_prob)
    test_file = file_template % (set_level, 'test', train_prob)

    #Build dataset
    dataset = BaseDataSet()
    dataset.build_data(train_file, test_file)
    logging.info("Build dataset cost:%s" % (dataset.cost_time))
    print "DataForTrain: %s" % (train_file)
    print "DataForTest: %s" % (test_file)
    print "Dataset train_set info: %s" % (dataset.get_train_info())
    print "Dataset test_set info: %s" % (dataset.get_test_info())

    #Record best scores
    best_f_score = {'f_score': 0}
    best_precision = {'precision': 0}
    best_recall = {'recall': 0}

    #Data Preparation
    items_tag_dict = {}
    users_tag_dict = {}
    if recommend_job in ('mix_result_reorder', 'mix_sim_reorder'):
        items_tag_dict = load_tag_distribution(
            './song_dataset/mid_data/song_tag_distribution.json'
        )  #Load item_tag_distrib
        user_tag_file = './song_dataset/mid_data/user_tag_distribution_%s_%s.json' % (
            set_level, train_prob)
        users_tag_dict = load_tag_distribution(user_tag_file)

    #Initiate Hybird-Model
    recommender = HybirdModel()
    if recommend_job in ('mix_sim', 'mix_sim_reorder'):
        recommender.hybird_user_sim(dataset.train_data,
                                    userTag_sim_file,
                                    userLDA_sim_file,
                                    theta=0.45)
    elif recommend_job in ('mix_result', 'mix_result_reorder'):
        recommender.userTag.load_user_similarity(userTag_sim_file, norm=1)
        recommender.userLda.load_user_similarity(userLDA_sim_file, norm=1)

    for user_k in [5] + range(10, 101, 10):
        if recommend_job == 'mix_sim':
            recommender.recommend(dataset.train_data,
                                  users_tag_dict,
                                  items_tag_dict,
                                  user_k,
                                  top_n,
                                  reorder=0)
        elif recommend_job == 'mix_sim_reorder':
            recommender.recommend(dataset.train_data,
                                  users_tag_dict,
                                  items_tag_dict,
                                  user_k,
                                  top_n,
                                  reorder=1)
        elif recommend_job == 'mix_result':
            recommender.hybird_recommend_result(dataset.train_data, user_k,
                                                top_n)
        elif recommend_job == 'mix_result_reorder':
            recommender.hybird_result_withReorder(dataset.train_data,
                                                  users_tag_dict,
                                                  items_tag_dict, user_k,
                                                  top_n)
        logging.info("Train_prob:%s User_k:%s Top_n:%s cost:%s" %
                     (train_prob, user_k, top_n, recommender.cost_time))
        scores = recommender.score(dataset.test_data, len(dataset.all_songs))
        print "User_k:%s\tTop_n:%s\tScores:%s" % (user_k, top_n, scores)

        #Find Best Score
        if scores['f_score'] > best_f_score['f_score']:
            best_f_score = scores
            best_f_score['user_k'] = user_k
            best_f_score['top_n'] = top_n
        if scores['precision'] > best_precision['precision']:
            best_precision = scores
            best_precision['user_k'] = user_k
            best_precision['top_n'] = top_n
        if scores['recall'] > best_recall['recall']:
            best_recall = scores
            best_recall['user_k'] = user_k
            best_recall['top_n'] = top_n

    print "Best_F_Score: %s" % (best_f_score)
    print "Best_Precision: %s" % (best_precision)
    print "Best_Recall: %s" % (best_recall)