def __init__(self, L, Nmax, t, U, mu, V, Vint, offset): """ Initialization. Input: system size L (int), maximum occupation number N (int), t, U, mu, V, Vint (all are either float or numpy float array of length L) and offset (float). Will generate the MPO of Hamiltonian in self.hamil. """ self.L = L self.d = Nmax + 1 self.t = Common.toArray(L, t) self.U = Common.toArray(L, U) self.mu = Common.toArray(L, mu) self.V = Common.toArray(L, V) self.Vint = Common.toArray(L, Vint) self.hamil = MPO.MPO(L, 5, self.d) self.offset = offset delta = offset / L self.Z = np.zeros((5, self.d, self.d), dtype=complex) self.Z[0, :, :] = np.identity(self.d, dtype=complex) # Id self.Z[1, :, :] = np.diag( np.arange(self.d) * (np.arange(self.d) - 1) + 0j) # n(n-1) self.Z[2, :, :] = np.diag(np.sqrt(np.arange(self.d - 1) + 1) + 0j, -1) # b^dag self.Z[3, :, :] = np.diag(np.sqrt(np.arange(self.d - 1) + 1) + 0j, 1) # b self.Z[4, :, :] = np.diag(np.arange(self.d) + 0j) # n opL = np.zeros((1, 5, 5), dtype=complex) opL[0, 0, 0] = 1 opL[0, 1, 2] = 1 opL[0, 2, 3] = 1 opL[0, 3, 4] = 1 opL[0, 4, 4] = self.V[0] - self.mu[0] opL[0, 4, 1] = self.U[0] / 2 opL[0, 4, 0] = delta self.hamil.setA(0, np.einsum('ijk,kmn->mnij', opL, self.Z)) opR = np.zeros((5, 1, 5), dtype=complex) opR[0, 0, 4] = self.V[self.L - 1] - self.mu[self.L - 1] opR[0, 0, 1] = self.U[self.L - 1] / 2 opR[0, 0, 0] = delta opR[1, 0, 3] = -self.t[self.L - 1] opR[2, 0, 2] = -self.t[self.L - 1] opR[3, 0, 4] = self.Vint[self.L - 2] opR[4, 0, 0] = 1 self.hamil.setA(L - 1, np.einsum('ijk,kmn->mnij', opR, self.Z)) for i in range(1, L - 1): opM = np.zeros((5, 5, 5), dtype=complex) opM[0, 0, 0] = 1 opM[0, 1, 2] = 1 opM[0, 2, 3] = 1 opM[0, 3, 4] = 1 opM[0, 4, 4] = self.V[i] - self.mu[i] opM[0, 4, 1] = self.U[i] / 2 opM[0, 4, 0] = delta opM[1, 4, 3] = -self.t[i] opM[2, 4, 2] = -self.t[i] opM[3, 4, 4] = self.Vint[i - 1] opM[4, 4, 0] = 1 self.hamil.setA(i, np.einsum('ijk,kmn->mnij', opM, self.Z))
def __init__(self, L, Jx, Jy, Jz, g, h, offset): """ Initialization. Input: system size L (int), interaction Jx, Jy and Jz, longitudinal field g, transverse field h (Jx, Jy, Jz, g and h are either float or numpy float array of length L) and offset (float). Will generate the MPO of Hamiltonian in self.hamil. """ self.L = L self.Jx = Common.toArray(L, Jx) self.Jy = Common.toArray(L, Jy) self.Jz = Common.toArray(L, Jz) self.g = Common.toArray(L, g) self.h = Common.toArray(L, h) self.offset = offset self.hamil = MPO.MPO(L, 5, 2) opL = np.array([[[1, 0, 0, 0], [0, self.Jx[0], 0, 0], [0, 0, self.Jy[0], 0], [0, 0, 0, self.Jz[0]], [offset / L, self.g[0], 0, self.h[0]]]]) opR = np.array([[[offset / L, self.g[L - 1], 0, self.h[L - 1]]], [[0, 1, 0, 0]], [[0, 0, 1, 0]], [[0, 0, 0, 1]], [[1, 0, 0, 0]]]) self.hamil.ops[0].A = np.einsum('ijk,kml->mlij', opL, PauliSigma) self.hamil.ops[L - 1].A = np.einsum('ijk,kml->mlij', opR, PauliSigma) for i in range(1, L - 1): opM = np.array([[[1, 0, 0, 0], [0, self.Jx[i], 0, 0], [0, 0, self.Jy[i], 0], [0, 0, 0, self.Jz[i]], [offset / L, self.g[i], 0, self.h[i]]], [[0, 0, 0, 0], [0, 0, 0, 0], [ 0, 0, 0, 0], [0, 0, 0, 0], [0, 1, 0, 0]], [[0, 0, 0, 0], [0, 0, 0, 0], [ 0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 1, 0]], [[0, 0, 0, 0], [0, 0, 0, 0], [ 0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 1]], [[0, 0, 0, 0], [0, 0, 0, 0], [ 0, 0, 0, 0], [0, 0, 0, 0], [1, 0, 0, 0]] ]) self.hamil.ops[i].A = np.einsum('ijk,kml->mlij', opM, PauliSigma)