if __name__ == "__main__": if not os.path.exists('./results'): os.makedirs('./results') print("Train LPMC_DC_L with LS-ABS and hybrid-inv") model = LPMC_DC(data_folder, file='12_13_14.csv') ioa = OptAlg(alg_type='LS-ABS', direction='hybrid-inv') res = {'time': [], 'LL': [], 'epochs': []} for i in range(20): tmp = model.optimize( ioa, **{ 'verbose': False, 'max_epochs': 1000, 'batch': 1000 }) res['time'].append(tmp['opti_time']) res['LL'].append(tmp['fun']) res['epochs'].append(tmp['nep']) with open('results/LS-ABS_hybrid-inv.json', 'w') as outfile: json.dump(res, outfile) print("{}/20 done!".format(i + 1))
param_ph = [0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100] res['perc_hybrid'] = {} for ph in param_ph: tmp_res = {'time': [], 'LL': [], 'epochs': []} print(" Value: {}".format(ph)) main_params['perc_hybrid'] = ph for i in range(draws): print(main_params) tmp = model.optimize(ioa, **main_params) tmp_res['time'].append(tmp['opti_time']) tmp_res['LL'].append(tmp['fun']) tmp_res['epochs'].append(tmp['nep']) res['perc_hybrid'][ph] = tmp_res with open('results/DC_hybrid.json', 'w') as outfile: json.dump(res, outfile) print("{}/{} done!".format(i + 1, draws)) print("")