if __name__ == "__main__": if not os.path.exists('./results'): os.makedirs('./results') print("Train MTMC with LS-ABS and hybrid-inv") model = MTMC(data_folder) ioa = OptAlg(alg_type='LS-ABS', direction='hybrid-inv') res = {'time': [], 'LL': [], 'epochs': []} for i in range(20): tmp = model.optimize( ioa, **{ 'verbose': False, 'max_epochs': 1000, 'batch': 1000 }) res['time'].append(tmp['opti_time']) res['LL'].append(tmp['fun']) res['epochs'].append(tmp['nep']) with open('results/LS-ABS_hybrid-inv.json', 'w') as outfile: json.dump(res, outfile) print("{}/20 done!".format(i + 1))
import sys sys.path.append("../..") import os from algos import OptAlg from models import MTMC data_folder = '../../../data/' if __name__ == "__main__": if not os.path.exists('./results'): os.makedirs('./results') print("Train MTMC_MNL with HAMABS") model = MTMC(data_folder) ioa = OptAlg(alg_type='LS-ABS', direction='hybrid-inv') tmp = model.optimize( ioa, **{ 'verbose': True, 'nbr_epochs': 1000, 'batch': 1000 })