Exemple #1
0
def train_net(args):
    torch.manual_seed(7)
    np.random.seed(7)
    checkpoint = args.checkpoint
    start_epoch = 0
    best_acc = 0
    writer = SummaryWriter()
    epochs_since_improvement = 0

    # Initialize / load checkpoint
    if checkpoint is None:
        if args.network == 'r18':
            model = resnet18(args)
        elif args.network == 'r34':
            model = resnet34(args)
        elif args.network == 'r50':
            model = resnet50(args)
        elif args.network == 'r101':
            model = resnet101(args)
        elif args.network == 'r152':
            model = resnet152(args)
        elif args.network == 'mobile':
            model = MobileNet(1.0)
        elif args.network == 'mr18':
            print("mr18")
            model = myResnet18()
        else:
            model = resnet_face18(args.use_se)
        model = nn.DataParallel(model)
        metric_fc = ArcMarginModel(args)
        metric_fc = nn.DataParallel(metric_fc)

        if args.optimizer == 'sgd':
            optimizer = torch.optim.SGD([{
                'params': model.parameters()
            }, {
                'params': metric_fc.parameters()
            }],
                                        lr=args.lr,
                                        momentum=args.mom,
                                        weight_decay=args.weight_decay)
        else:
            optimizer = torch.optim.Adam([{
                'params': model.parameters()
            }, {
                'params': metric_fc.parameters()
            }],
                                         lr=args.lr,
                                         weight_decay=args.weight_decay)

    else:
        checkpoint = torch.load(checkpoint)
        start_epoch = checkpoint['epoch'] + 1
        epochs_since_improvement = checkpoint['epochs_since_improvement']
        model = checkpoint['model']
        metric_fc = checkpoint['metric_fc']
        optimizer = checkpoint['optimizer']

    logger = get_logger()

    # Move to GPU, if available
    model = model.to(device)
    metric_fc = metric_fc.to(device)

    # Loss function
    if args.focal_loss:
        criterion = FocalLoss(gamma=args.gamma).to(device)
    else:
        criterion = nn.CrossEntropyLoss().to(device)

    # Custom dataloaders
    train_dataset = ArcFaceDataset('train')
    train_loader = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=args.batch_size,
                                               shuffle=True)

    scheduler = StepLR(optimizer, step_size=args.lr_step, gamma=0.1)

    # Epochs
    for epoch in range(start_epoch, args.end_epoch):
        scheduler.step()

        if args.full_log:
            lfw_acc, threshold = lfw_test(model)
            writer.add_scalar('LFW_Accuracy', lfw_acc, epoch)
            full_log(epoch)

        start = datetime.now()
        # One epoch's training
        train_loss, train_top5_accs = train(train_loader=train_loader,
                                            model=model,
                                            metric_fc=metric_fc,
                                            criterion=criterion,
                                            optimizer=optimizer,
                                            epoch=epoch,
                                            logger=logger,
                                            writer=writer)

        writer.add_scalar('Train_Loss', train_loss, epoch)
        writer.add_scalar('Train_Top5_Accuracy', train_top5_accs, epoch)

        end = datetime.now()
        delta = end - start
        print('{} seconds'.format(delta.seconds))

        # One epoch's validation
        lfw_acc, threshold = lfw_test(model)
        writer.add_scalar('LFW Accuracy', lfw_acc, epoch)

        # Check if there was an improvement
        is_best = lfw_acc > best_acc
        best_acc = max(lfw_acc, best_acc)
        if not is_best:
            epochs_since_improvement += 1
            print("\nEpochs since last improvement: %d\n" %
                  (epochs_since_improvement, ))
        else:
            epochs_since_improvement = 0

        # Save checkpoint
        save_checkpoint(epoch, epochs_since_improvement, model, metric_fc,
                        optimizer, best_acc, is_best)
Exemple #2
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument("--mode", type=str, default="train")
    parser.add_argument("--model", type=str, default="mobilenet_v2")
    parser.add_argument("--dataset", type=str, default="cifar10")
    parser.add_argument("--dataroot", type=str, default="/tmp/data")
    parser.add_argument("--batch_size", type=int, default=128)
    parser.add_argument("--n_epochs", type=int, default=100)
    parser.add_argument("--lr", type=float, default=1e-3)
    parser.add_argument("--n_gpus", type=int, default=1)
    parser.add_argument("--checkpoint", type=str, default="/tmp/chkpt.pth.tar")
    parser.add_argument("--save_every", type=int, default=10)
    parser.add_argument("--pretrained", type=str, default=None)
    args = parser.parse_args()
    print(args)

    if torch.cuda.is_available():
        print("cuda is available, use cuda")
        device = torch.device("cuda")
    else:
        print("cuda is not available, use cpu")
        device = torch.device("cpu")

    print("download dataset: {}".format(args.dataset))
    train_loader, test_loader, n_classes = get_loaders(
        dataset=args.dataset, root=args.dataroot, batch_size=args.batch_size)

    print("build model: {}".format(args.model))
    if args.model == "mobilenet":
        from models import MobileNet
        model = MobileNet(n_classes=n_classes)
    elif args.model == "mobilenet_v2":
        from models import MobileNet_v2
        model = MobileNet_v2(n_classes=n_classes)
    elif args.model == "shufflenet":
        from models import ShuffleNet
        model = ShuffleNet(n_classes=n_classes)
    elif args.model == "shufflenet_v2":
        from models import ShuffleNet_v2
        model = ShuffleNet_v2(n_classes=n_classes)
    elif args.model == "squeezenet":
        from models import SqueezeNet
        model = SqueezeNet(n_classes=n_classes)
    else:
        raise NotImplementedError

    model = model.to(device)
    if args.pretrained:
        model.load_state_dict(torch.load(args.checkpoint))

    if args.n_gpus > 1:
        gpus = []
        for i in range(args.n_gpus):
            gpus.append(i)
        model = nn.DataParallel(model, device_ids=gpus)

    optimizer = optim.Adam(model.parameters(), lr=args.lr)
    criterion = nn.CrossEntropyLoss()

    if args.mode == "train":
        for epoch in range(args.n_epochs):
            train(epoch, model, optimizer, criterion, train_loader, device)
            if (epoch + 1) % args.save_every == 0:
                print("saving model...")
                torch.save(the_model.state_dict(), args.checkpoint)
    elif args.mode == "test":
        test(model, criterion, test_loader, device)
    else:
        raise NotImplementedError
Exemple #3
0
def train_net(args):
    torch.manual_seed(7)
    np.random.seed(7)
    checkpoint = args.checkpoint
    start_epoch = 0
    best_acc = 0
    writer = SummaryWriter()
    epochs_since_improvement = 0

    # Initialize / load checkpoint
    if checkpoint is None:
        if args.network == 'r18':
            model = resnet18(args)
        elif args.network == 'r34':
            model = resnet34(args)
        elif args.network == 'r50':
            model = resnet50(args)
        elif args.network == 'r101':
            model = resnet101(args)
        elif args.network == 'r152':
            model = resnet152(args)
        elif args.network == 'mobile':
            model = MobileNet(1.0)
        else:
            model = resnet_face18(args.use_se)
        model = nn.DataParallel(model)
        metric_fc = ArcMarginModel(args)
        metric_fc = nn.DataParallel(metric_fc)

        if args.optimizer == 'sgd':
            # optimizer = torch.optim.SGD([{'params': model.parameters()}, {'params': metric_fc.parameters()}],
            #                             lr=args.lr, momentum=args.mom, weight_decay=args.weight_decay)
            optimizer = InsightFaceOptimizer(
                torch.optim.SGD([{
                    'params': model.parameters()
                }, {
                    'params': metric_fc.parameters()
                }],
                                lr=args.lr,
                                momentum=args.mom,
                                weight_decay=args.weight_decay))
        else:
            optimizer = torch.optim.Adam([{
                'params': model.parameters()
            }, {
                'params': metric_fc.parameters()
            }],
                                         lr=args.lr,
                                         weight_decay=args.weight_decay)

    else:
        checkpoint = torch.load(checkpoint)
        start_epoch = checkpoint['epoch'] + 1
        epochs_since_improvement = checkpoint['epochs_since_improvement']
        model = checkpoint['model']
        metric_fc = checkpoint['metric_fc']
        optimizer = checkpoint['optimizer']

    logger = get_logger()

    # Move to GPU, if available
    model = model.to(device)
    metric_fc = metric_fc.to(device)

    # Loss function
    if args.focal_loss:
        criterion = FocalLoss(gamma=args.gamma).to(device)
    else:
        criterion = nn.CrossEntropyLoss().to(device)

    # Custom dataloaders
    train_dataset = ArcFaceDataset('train')
    train_loader = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=args.batch_size,
                                               shuffle=True,
                                               num_workers=8)

    # Epochs
    for epoch in range(start_epoch, args.end_epoch):
        # One epoch's training
        train_loss, train_top1_accs = train(train_loader=train_loader,
                                            model=model,
                                            metric_fc=metric_fc,
                                            criterion=criterion,
                                            optimizer=optimizer,
                                            epoch=epoch,
                                            logger=logger)
        print('\nCurrent effective learning rate: {}\n'.format(optimizer.lr))
        print('Step num: {}\n'.format(optimizer.step_num))

        writer.add_scalar('model/train_loss', train_loss, epoch)
        writer.add_scalar('model/train_accuracy', train_top1_accs, epoch)
        writer.add_scalar('model/learning_rate', optimizer.lr, epoch)

        # One epoch's validation
        megaface_acc = megaface_test(model)
        writer.add_scalar('model/megaface_accuracy', megaface_acc, epoch)

        # Check if there was an improvement
        is_best = megaface_acc > best_acc
        best_acc = max(megaface_acc, best_acc)
        if not is_best:
            epochs_since_improvement += 1
            print("\nEpochs since last improvement: %d\n" %
                  (epochs_since_improvement, ))
        else:
            epochs_since_improvement = 0

        # Save checkpoint
        save_checkpoint(epoch, epochs_since_improvement, model, metric_fc,
                        optimizer, best_acc, is_best)
def train_net(args):
    torch.manual_seed(7)  #torch的随机种子,在torch.randn使用
    np.random.seed(7)
    checkpoint = args.checkpoint
    start_epoch = 0
    best_acc = 0
    writer = SummaryWriter()  #tensorboard
    epochs_since_improvement = 0

    # Initialize / load checkpoint
    if checkpoint is None:
        if args.network == 'r18':
            model = resnet18(args)
        elif args.network == 'r34':
            model = resnet34(args)
        elif args.network == 'r50':
            model = resnet50(args)
        elif args.network == 'r101':
            model = resnet101(args)
        elif args.network == 'r152':
            model = resnet152(args)
        elif args.network == 'mobile':
            model = MobileNet(1.0)
        else:
            model = resnet_face18(args.use_se)

        model = nn.DataParallel(model)
        metric_fc = ArcMarginModel(args)
        metric_fc = nn.DataParallel(metric_fc)

        if args.optimizer == 'sgd':
            # optimizer = torch.optim.SGD([{'params': model.parameters()}, {'params': metric_fc.parameters()}],
            #                             lr=args.lr, momentum=args.mom, weight_decay=args.weight_decay)
            optimizer = InsightFaceOptimizer(
                torch.optim.SGD([{
                    'params': model.parameters()
                }, {
                    'params': metric_fc.parameters()
                }],
                                lr=args.lr,
                                momentum=args.mom,
                                weight_decay=args.weight_decay))
        else:
            optimizer = torch.optim.Adam([{
                'params': model.parameters()
            }, {
                'params': metric_fc.parameters()
            }],
                                         lr=args.lr,
                                         weight_decay=args.weight_decay)

    else:
        checkpoint = torch.load(checkpoint)
        #这里还需要自己加载进去
        start_epoch = checkpoint['epoch'] + 1
        epochs_since_improvement = checkpoint['epochs_since_improvement']
        model = checkpoint['model']
        metric_fc = checkpoint['metric_fc']
        optimizer = checkpoint['optimizer']

    logger = get_logger()

    # Move to GPU, if available
    model = model.to(device)
    metric_fc = metric_fc.to(device)

    # Loss function
    if args.focal_loss:
        criterion = FocalLoss(gamma=args.gamma).to(device)
    else:
        criterion = nn.CrossEntropyLoss().to(device)

    # Custom dataloaders
    train_dataset = Dataset(root=args.train_path,
                            phase='train',
                            input_shape=(3, 112, 112))
    train_loader = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=args.batch_size,
                                               shuffle=True,
                                               num_workers=8)

    # Epochs
    for epoch in range(start_epoch, args.end_epoch):
        # One epoch's training
        # 这里写一个训练函数十分简练,值得学习
        train_loss, train_top1_accs = train(train_loader=train_loader,
                                            model=model,
                                            metric_fc=metric_fc,
                                            criterion=criterion,
                                            optimizer=optimizer,
                                            epoch=epoch,
                                            logger=logger)
        print('\nCurrent effective learning rate: {}\n'.format(optimizer.lr))
        print('Step num: {}\n'.format(optimizer.step_num))

        writer.add_scalar('model/train_loss', train_loss, epoch)
        writer.add_scalar('model/train_accuracy', train_top1_accs, epoch)
        writer.add_scalar('model/learning_rate', optimizer.lr, epoch)

        # Save checkpoint
        if epoch % 10 == 0:
            save_checkpoint(epoch, epochs_since_improvement, model, metric_fc,
                            optimizer, best_acc)
Exemple #5
0
def main():
    parser = argparse.ArgumentParser(
        description='Deep Learning SNN simulation')
    parser.add_argument('--config-file', default='config_1.ini')
    args = parser.parse_args()
    print(args)

    config = configparser.ConfigParser()
    config.read(args.config_file)
    pprint.pprint(
        {section: dict(config[section])
         for section in config.sections()})
    print

    defaults = config['DEFAULT']
    device = defaults['device']
    app_name = defaults['app_name']

    print('[INFO] Simulating spiking {}'.format(app_name))
    if not os.path.isdir(app_name):
        os.mkdir(app_name)
    out_dir = app_name

    org_model = config['original model']

    " Load the original model "
    net = None
    if 'mobilenet_cifar10' in org_model['arch']:
        net = MobileNet()
    if org_model['arch'] == 'vgg_cifar10':
        net = VGG_16_cifar10

    num_classes = org_model.getint('num_classes')
    model_path = org_model['model_path']
    file_name = org_model['file_name']
    state = None
    state, net = load_model(net, model_path, file_name)
    net = net.to(device)

    " Load the dataset "
    testloader, img_size = None, None
    data_config = config['dataset']
    data_dir = data_config['data_dir']
    if data_config['dataset'] == 'cifar10':
        _, testloader = load_cifar10(data_dir, org_model['arch'])
        img_size = [-1, 3, 32, 32]

    " Tasks to do "
    tasks = config['functions']
    if tasks.getboolean('validate'):
        print(net)
        validate(net, testloader, device)

    new_net = None
    if tasks.getboolean('remove_bn'):
        if has_bn(net):
            new_net = MobileNet_nobn()
            new_net = merge_bn(net, new_net)
            new_net = new_net.to(device)
            print(new_net)
            print('Validating model after folding back BN layers...')
            validate(new_net, testloader, device)
            save_model(new_net, state, out_dir, 'nobn_' + file_name)
        else:
            print('model has no BN layers')

    if tasks.getboolean('use_nobn'):
        if 'mobilenet_cifar10' in org_model['arch']:
            net = MobileNet_nobn()
            state, net = load_model(net, out_dir, 'nobn_' + file_name)
            net = net.to(device)

    " quantize model "
    quant_config = config['quantization']
    W = quant_config.getint('W')
    F = quant_config.getint('F')
    if tasks.getboolean('quantize'):
        net = quantize_model(net, W, F)
        net = net.to(device)
        print('Validating model after quantization...')
        state['acc'] = validate(net, testloader, device)
        save_model(net, state, out_dir, 'quant{}.{}_'.format(W, F) + file_name)

    " use quantized model "
    if tasks.getboolean('use_quant'):
        state, net = load_model(net, out_dir,
                                'quant{}.{}_'.format(W, F) + file_name)
        net = net.to(device)

    if tasks.getboolean('validate_nobn'):
        if not has_bn(net):
            print('Validating no_bn model...')
            validate(net, testloader)
        else:
            print('model has BN layers!! Exiting..')
            exit()

    " compute thresholds "
    spike_config = config['spiking']
    percentile = spike_config.getfloat('percentile')
    if spike_config.getboolean('compute_thresholds'):
        compute_thresholds(net, testloader, out_dir, percentile, device)

    " convert ann to snn "
    spike_net, thresholds, max_acts, clamp_slope = None, None, None, None
    if spike_config.getboolean('convert_to_spike'):
        thresholds = np.loadtxt(os.path.join(out_dir, 'thresholds.txt'))
        max_acts = np.loadtxt(os.path.join(out_dir, 'max_acts.txt'))
        clamp_slope = spike_config.getfloat('clamp_slope')

        spike_net = createSpikingModel(net, org_model['arch'], num_classes,
                                       spike_config, thresholds, max_acts,
                                       device)
        print(spike_net)
        sanity_check(net, spike_net, max_acts)

    " simulate snn "
    if spike_config.getboolean('simulate_spiking'):
        thresholds = np.loadtxt(os.path.join(out_dir, 'thresholds.txt'))
        max_acts = np.loadtxt(os.path.join(out_dir, 'max_acts.txt'))

        simulate_spike_model(net, org_model['arch'], testloader, config,
                             thresholds, max_acts, num_classes, img_size,
                             device)

    " plot correlations "
    if spike_config.getboolean('plot_correlations'):
        corr = np.load(os.path.join(out_dir, 'layerwise_corr.npy'))
        plot_config = config['plotting']
        #print('corr matrix shape: {}'.format(corr.shape))
        plot_correlations(corr, out_dir, plot_config)
Exemple #6
0
    ])
# Argv
test_fpath = sys.argv[1]
model_fpath = sys.argv[2]
output_fpath = sys.argv[3]
print('# [Info] Argv')
print('    - Test   : {}'.format(test_fpath))
print('    - Model  : {}'.format(model_fpath))
print('    = Output : {}'.format(output_fpath))
# Make data loader
test_dataset = MyDataset(filename=test_fpath, is_train=False, transform=test_transform)
test_loader = DataLoader(dataset=test_dataset, batch_size=BATCH_SIZE, shuffle=False) 
# Load model
model = MobileNet()
model.load_state_dict(torch.load(model_fpath, map_location=device))
model.to(device)
# Model prediction
model.eval()
prediction = []
for i, data in enumerate(test_loader):
    data_device = data.to(device)   
    output = model(data_device)
    labels = torch.max(output, 1)[1]
    for label in labels:
        prediction.append(label)
# Output prediction
print('# [Info] Output prediction: {}'.format(output_fpath))
with open(output_fpath, 'w') as f:
    f.write('id,label\n')
    for i, v in enumerate(prediction):
        f.write('%d,%d\n' %(i, v))