def test_cost_function(train_data, test_data): x, y, y_onehot, = train_data x_test, y_test = test_data network = NeuralNetwork(layers=[784, 25, 10]) network.fit(x, y_onehot, alpha=0.1, iterations=40) prediction_test = network.predict(x_test) accuracy_test = accuracy(prediction_test, y_test) assert accuracy_test > 90
if __name__ == '__main__': # Reading data, Inintializing classes in the workspace hlp, ft, als = Helpers(), Features(), Analysis() all_data = hlp.saveReadToLocal('read', '_all_av45', None, '_cache') all_data = all_data['av45'] keys = ['normal', 'mci', 'ad', 'labels_normal', 'labels_mci', 'labels_ad'] mixed_all_data = als.getTrainingSet(all_data, 0, 0, keys, do_split=False) print('Features dimention before normalization: ', len(mixed_all_data[0][0])) mixed_all_data = ft.normalizeFeatures(mixed_all_data) print('Features dimention after normalization: ', len(mixed_all_data[0][0])) # mixed_all_data = als._cleanDataset(mixed_all_data[0], mixed_all_data[1]) # grid_params = runAnalysis(mixed_all_data, classifier='svm') # a = runAnalysis(mixed_all_data, params=grid_params, classifier='svm') # print('Overall accuracy: ', np.mean(a)) input_size = len(mixed_all_data[0][0]) nn = NeuralNetwork([input_size, input_size, 40, 40, 3]) input_data = np.asarray(mixed_all_data[0]).reshape( (input_size, len(mixed_all_data[0]))) input_labels = np.asarray(mixed_all_data[1]).reshape( (1, len(mixed_all_data[1]))) nn.run(input_data, input_labels, 0.01, 5000) test = np.asarray(mixed_all_data[0][0]).reshape( (input_size, 1)) print(nn.predict(test))