Exemple #1
0
    backbone='resnet18',
    num_classes=2,
    pretrained_backbone=None,
)

# # ICNet
# model = ICNet(
#     backbone='resnet18',
#     num_classes=2,
#     pretrained_backbone=None,
# )

#------------------------------------------------------------------------------
#   Summary network
#------------------------------------------------------------------------------
model.train()
model.summary(input_shape=(3, args.input_sz, args.input_sz), device='cpu')

#------------------------------------------------------------------------------
#   Measure time
#------------------------------------------------------------------------------
input = torch.randn([1, 3, args.input_sz, args.input_sz], dtype=torch.float)
if args.use_cuda:
    model.cuda()
    input = input.cuda()

for _ in range(10):
    model(input)

start_time = time()
for _ in range(args.n_measures):
def main():
    net = PSPNet(num_classes=num_classes,
                 input_size=train_args['input_size']).cuda()
    if len(train_args['snapshot']) == 0:
        curr_epoch = 0
    else:
        print 'training resumes from ' + train_args['snapshot']
        net.load_state_dict(
            torch.load(
                os.path.join(ckpt_path, exp_name, train_args['snapshot'])))
        split_snapshot = train_args['snapshot'].split('_')
        curr_epoch = int(split_snapshot[1])
        train_record['best_val_loss'] = float(split_snapshot[3])
        train_record['corr_mean_iu'] = float(split_snapshot[6])
        train_record['corr_epoch'] = curr_epoch

    net.train()

    mean_std = ([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    train_simul_transform = simul_transforms.Compose([
        simul_transforms.Scale(int(train_args['input_size'][0] / 0.875)),
        simul_transforms.RandomCrop(train_args['input_size']),
        simul_transforms.RandomHorizontallyFlip()
    ])
    val_simul_transform = simul_transforms.Compose([
        simul_transforms.Scale(int(train_args['input_size'][0] / 0.875)),
        simul_transforms.CenterCrop(train_args['input_size'])
    ])
    img_transform = standard_transforms.Compose([
        standard_transforms.ToTensor(),
        standard_transforms.Normalize(*mean_std)
    ])
    target_transform = standard_transforms.Compose([
        expanded_transforms.MaskToTensor(),
        expanded_transforms.ChangeLabel(ignored_label, num_classes - 1)
    ])
    restore_transform = standard_transforms.Compose([
        expanded_transforms.DeNormalize(*mean_std),
        standard_transforms.ToPILImage()
    ])

    train_set = CityScapes('train',
                           simul_transform=train_simul_transform,
                           transform=img_transform,
                           target_transform=target_transform)
    train_loader = DataLoader(train_set,
                              batch_size=train_args['batch_size'],
                              num_workers=16,
                              shuffle=True)
    val_set = CityScapes('val',
                         simul_transform=val_simul_transform,
                         transform=img_transform,
                         target_transform=target_transform)
    val_loader = DataLoader(val_set,
                            batch_size=val_args['batch_size'],
                            num_workers=16,
                            shuffle=False)

    weight = torch.ones(num_classes)
    weight[num_classes - 1] = 0
    criterion = CrossEntropyLoss2d(weight).cuda()

    # don't use weight_decay for bias
    optimizer = optim.SGD([{
        'params': [
            param for name, param in net.named_parameters()
            if name[-4:] == 'bias' and (
                'ppm' in name or 'final' in name or 'aux_logits' in name)
        ],
        'lr':
        2 * train_args['new_lr']
    }, {
        'params': [
            param for name, param in net.named_parameters()
            if name[-4:] != 'bias' and (
                'ppm' in name or 'final' in name or 'aux_logits' in name)
        ],
        'lr':
        train_args['new_lr'],
        'weight_decay':
        train_args['weight_decay']
    }, {
        'params': [
            param
            for name, param in net.named_parameters() if name[-4:] == 'bias'
            and not ('ppm' in name or 'final' in name or 'aux_logits' in name)
        ],
        'lr':
        2 * train_args['pretrained_lr']
    }, {
        'params': [
            param
            for name, param in net.named_parameters() if name[-4:] != 'bias'
            and not ('ppm' in name or 'final' in name or 'aux_logits' in name)
        ],
        'lr':
        train_args['pretrained_lr'],
        'weight_decay':
        train_args['weight_decay']
    }],
                          momentum=0.9,
                          nesterov=True)

    if len(train_args['snapshot']) > 0:
        optimizer.load_state_dict(
            torch.load(os.path.join(ckpt_path,
                                    'opt_' + train_args['snapshot'])))
        optimizer.param_groups[0]['lr'] = 2 * train_args['new_lr']
        optimizer.param_groups[1]['lr'] = train_args['new_lr']
        optimizer.param_groups[2]['lr'] = 2 * train_args['pretrained_lr']
        optimizer.param_groups[3]['lr'] = train_args['pretrained_lr']

    if not os.path.exists(ckpt_path):
        os.mkdir(ckpt_path)
    if not os.path.exists(os.path.join(ckpt_path, exp_name)):
        os.mkdir(os.path.join(ckpt_path, exp_name))

    for epoch in range(curr_epoch, train_args['epoch_num']):
        train(train_loader, net, criterion, optimizer, epoch)
        validate(val_loader, net, criterion, optimizer, epoch,
                 restore_transform)