def __init__(self):
        self.pre = Preprocess()
        self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
        self.net = ResnetGenerator(ngf=32, img_size=256, light=True).to(self.device)

        params = torch.load('./models/photo2cartoon_10000.pt', map_location=self.device)
        self.net.load_state_dict(params['genA2B'])
class Photo2Cartoon:
    def __init__(self):
        self.pre = Preprocess()
        self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
        self.net = ResnetGenerator(ngf=32, img_size=256, light=True).to(self.device)

        params = torch.load('./models/photo2cartoon_10000.pt', map_location=self.device)
        self.net.load_state_dict(params['genA2B'])

    def inference(self, img):
        # face alignment and segmentation
        face_rgba = self.pre.process(img)
        if face_rgba is None:
            print('can not detect face!!!')
            return None

        face_rgba = cv2.resize(face_rgba, (256, 256), interpolation=cv2.INTER_AREA)
        face = face_rgba[:, :, :3].copy()
        mask = face_rgba[:, :, 3][:, :, np.newaxis].copy() / 255.
        face = (face * mask + (1 - mask) * 255) / 127.5 - 1

        face = np.transpose(face[np.newaxis, :, :, :], (0, 3, 1, 2)).astype(np.float32)
        face = torch.from_numpy(face).to(self.device)

        # inference
        with torch.no_grad():
            cartoon = self.net(face)[0][0]

        # post-process
        cartoon = np.transpose(cartoon.cpu().numpy(), (1, 2, 0))
        cartoon = (cartoon + 1) * 127.5
        cartoon = (cartoon * mask + 255 * (1 - mask)).astype(np.uint8)
        cartoon = cv2.cvtColor(cartoon, cv2.COLOR_RGB2BGR)
        return cartoon
    def __init__(self):
        self.pre = Preprocess()
        self.net = ResnetGenerator(ngf=32, img_size=256, light=True)

        assert os.path.exists(
            './models/photo2cartoon_weights.pdparams'
        ), "[Step1: load weights] Can not find 'photo2cartoon_weights.pt' in folder 'models!!!'"
        params = paddle.load('./models/photo2cartoon_weights.pdparams')
        self.net.set_state_dict(params['genA2B'])
        print('[Step1: load weights] success!')
    def __init__(self,weight_path):

        self.pre = Preprocess()
        self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
        self.net = ResnetGenerator(ngf=32, img_size=256, light=True).to(self.device)

        assert os.path.exists(weight_path), "[Step1: load weights] Can not find 'photo2cartoon_weights.pt' in folder 'models!!!'"
        params = torch.load(weight_path, map_location=self.device)
        self.net.load_state_dict(params['genA2B'])          # get the generator human face to cartoon portrait
        print('[Step1: load weights] success!')
Exemple #5
0
    def __init__(self):
        self.pre = Preprocess()
        self.device = torch.device(
            "cuda:0" if torch.cuda.is_available() else "cpu")
        self.net = ResnetGenerator(ngf=32, img_size=256,
                                   light=True).to(self.device)

        assert os.path.exists(
            './models/photo2blackjack_weights.pt'
        ), "[Step1: load weights] Can not find 'photo2blackjack_weights.pt' in folder 'models!!!'"
        params = torch.load('./models/photo2blackjack_weights.pt',
                            map_location=self.device)
        self.net.load_state_dict(params['genA2B'])
        print('[Step1: load weights] success!')
Exemple #6
0
class Photo2Cartoon:
    def __init__(self):
        self.pre = Preprocess()
        self.device = torch.device(
            "cuda:0" if torch.cuda.is_available() else "cpu")
        self.net = ResnetGenerator(ngf=32, img_size=256,
                                   light=True).to(self.device)

        assert os.path.exists(
            './models/photo2blackjack_weights.pt'
        ), "[Step1: load weights] Can not find 'photo2blackjack_weights.pt' in folder 'models!!!'"
        params = torch.load('./models/photo2blackjack_weights.pt',
                            map_location=self.device)
        self.net.load_state_dict(params['genA2B'])
        print('[Step1: load weights] success!')

    def inference(self, img):
        # face alignment and segmentation
        face_rgba = self.pre.process(img)
        if face_rgba is None:
            print('[Step2: face detect] can not detect face!!!')
            return None

        print('[Step2: face detect] success!')
        face_rgba = cv2.resize(face_rgba, (256, 256),
                               interpolation=cv2.INTER_AREA)
        face = face_rgba[:, :, :3].copy()
        mask = face_rgba[:, :, 3][:, :, np.newaxis].copy() / 255.

        face = (face * mask + (1 - mask) * 255)
        img = Image.fromarray(np.uint8(face))
        img = img.convert("L")
        img = img.convert("RGB")
        face = np.asarray(img)

        face = np.transpose(face[np.newaxis, :, :, :],
                            (0, 3, 1, 2)).astype(np.float32)
        face = torch.from_numpy(face).to(self.device)

        # inference
        with torch.no_grad():
            cartoon = self.net(face)[0][0]

        # post-process
        cartoon = np.transpose(cartoon.cpu().numpy(), (1, 2, 0))
        cartoon = (cartoon + 1) * 127.5
        cartoon = (cartoon * mask + 255 * (1 - mask)).astype(np.uint8)
        cartoon = cv2.cvtColor(cartoon, cv2.COLOR_RGB2BGR)
        print('[Step3: face detect] success!')
        return cartoon
Exemple #7
0
def test_methods(opt):
    opt.save_root = os.path.split(opt.source_dir)[0]
    if opt.method == "StainNet":
        model = StainNet(opt.input_nc, opt.output_nc, opt.n_layer,
                         opt.channels)
        model = model.cuda()
        model.load_state_dict(torch.load(opt.model_path))
        model.eval()
        opt.result_dir = detect_image(opt, model)
    elif opt.method == "StainGAN":
        model = ResnetGenerator(opt.input_nc,
                                opt.output_nc,
                                ngf=64,
                                norm_layer=torch.nn.InstanceNorm2d,
                                n_blocks=9)
        model = model.cuda()
        model.load_state_dict(torch.load(opt.model_path))
        model.eval()
        opt.result_dir = detect_image(opt, model)
    elif opt.method in ["reinhard", "macenko", "vahadane"]:
        opt.result_dir = traditional_methods(opt)
    else:
        raise RuntimeError("Not implemented Error!")
    print("result save to ", opt.result_dir)
    if opt.test_ssim:
        mean_ssim, mean_psnr, mean_ssim_source = test_result(opt)
        fs = open(os.path.join(opt.result_dir, "result.txt"), "a+")
        fs.write("{}, SSIM GT:{}, PSNR GT:{}, SSIM Source:{}\n".format(
            datetime.now(), mean_ssim, mean_psnr, mean_ssim_source))
        print("test result save to ", os.path.join(opt.result_dir,
                                                   "result.txt"))
class Photo2Cartoon:
    def __init__(self):
        self.pre = Preprocess()
        self.net = ResnetGenerator(ngf=32, img_size=256, light=True)

        assert os.path.exists(
            './models/photo2cartoon_weights.pdparams'
        ), "[Step1: load weights] Can not find 'photo2cartoon_weights.pt' in folder 'models!!!'"
        params = paddle.load('./models/photo2cartoon_weights.pdparams')
        self.net.set_state_dict(params['genA2B'])
        print('[Step1: load weights] success!')

    def inference(self, img):
        # face alignment and segmentation
        face_rgba = self.pre.process(img)
        if face_rgba is None:
            print('[Step2: face detect] can not detect face!!!')
            return None

        print('[Step2: face detect] success!')
        face_rgba = cv2.resize(face_rgba, (256, 256),
                               interpolation=cv2.INTER_AREA)
        face = face_rgba[:, :, :3].copy()
        mask = face_rgba[:, :, 3][:, :, np.newaxis].copy() / 255.
        face = (face * mask + (1 - mask) * 255) / 127.5 - 1

        face = np.transpose(face[np.newaxis, :, :, :],
                            (0, 3, 1, 2)).astype(np.float32)
        face = paddle.to_tensor(face)

        # inference
        with paddle.no_grad():
            cartoon = self.net(face)[0][0]

        # post-process
        cartoon = np.transpose(cartoon.numpy(), (1, 2, 0))
        cartoon = (cartoon + 1) * 127.5
        cartoon = (cartoon * mask + 255 * (1 - mask)).astype(np.uint8)
        cartoon = cv2.cvtColor(cartoon, cv2.COLOR_RGB2BGR)
        print('[Step3: photo to cartoon] success!')
        return cartoon
Exemple #9
0
def gen_cartoon(img):
    pre = Preprocess()
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    net = ResnetGenerator(ngf=32, img_size=256, light=True).to(device)

    assert os.path.exists(
        './models/photo2cartoon_weights.pt'
    ), "[Step1: load weights] Can not find 'photo2cartoon_weights.pt' in folder 'models!!!'"
    params = torch.load('./models/photo2cartoon_weights.pt',
                        map_location=device)
    net.load_state_dict(params['genA2B'])

    # face alignment and segmentation
    face_rgba = pre.process(img)
    if face_rgba is None:
        return None

    face_rgba = cv2.resize(face_rgba, (256, 256), interpolation=cv2.INTER_AREA)
    face = face_rgba[:, :, :3].copy()
    mask = face_rgba[:, :, 3][:, :, np.newaxis].copy() / 255.
    face = (face * mask + (1 - mask) * 255) / 127.5 - 1

    face = np.transpose(face[np.newaxis, :, :, :],
                        (0, 3, 1, 2)).astype(np.float32)
    face = torch.from_numpy(face).to(device)

    # inference
    with torch.no_grad():
        cartoon = net(face)[0][0]

    # post-process
    cartoon = np.transpose(cartoon.cpu().numpy(), (1, 2, 0))
    cartoon = (cartoon + 1) * 127.5
    cartoon = (cartoon * mask + 255 * (1 - mask)).astype(np.uint8)
    cartoon = cv2.cvtColor(cartoon, cv2.COLOR_RGB2BGR)
    out_path = Path(tempfile.mkdtemp()) / "out.png"
    cv2.imwrite(str(out_path), cartoon)
    return out_path
Exemple #10
0
class Photo2Cartoon:
    def __init__(self):
        self.pre = Preprocess()
        self.device = torch.device(
            "cuda:0" if torch.cuda.is_available() else "cpu")
        self.net = ResnetGenerator(ngf=32, img_size=256,
                                   light=True).to(self.device)

        assert os.path.exists(
            './models/photo2cartoon_weights.pt'
        ), "[Step1: load weights] Can not find 'photo2cartoon_weights.pt' in folder 'models!!!'"
        params = torch.load('./models/photo2cartoon_weights.pt',
                            map_location=self.device)
        self.net.load_state_dict(params['genA2B'])
        print('[Step1: load weights] success!')

    def inference(self, img):
        # face alignment and segmentation
        start = time.time()
        face_rgba = self.pre.process_optimize(img)
        # cv2.imwrite("/home/onepiece/GZX/photo2cartoon/photo2cartoon-master/images/face_rgba.png", face_rgba)
        end = time.time()
        print("preprocess time spent: ", end - start)

        if face_rgba is None:
            print('[Step2: face detect] can not detect face!!!')
            return None, None, None

        print('[Step2: face detect] success!')
        size = [face_rgba.shape[0], face_rgba.shape[1]]
        face_rgba = cv2.resize(face_rgba, (256, 256),
                               interpolation=cv2.INTER_AREA)
        face = face_rgba[:, :, :3].copy()
        mask = face_rgba[:, :, 3][:, :, np.newaxis].copy() / 255.
        # mask = np.ones((256, 256, 1)) # cancel front background segmentation module
        face = (face * mask + (1 - mask) * 255) / 127.5 - 1

        face = np.transpose(face[np.newaxis, :, :, :],
                            (0, 3, 1, 2)).astype(np.float32)
        face = torch.from_numpy(face).to(self.device)

        # inference
        with torch.no_grad():
            cartoon = self.net(face)[0][0]

        # post-process
        cartoon = np.transpose(cartoon.cpu().numpy(), (1, 2, 0))
        cartoon = (cartoon + 1) * 127.5
        cartoon = (cartoon * mask + 255 * (1 - mask)).astype(np.uint8)
        cartoon = cv2.cvtColor(cartoon, cv2.COLOR_RGB2BGR)
        print('[Step3: photo to cartoon] success!')

        # cv2.imwrite("/home/onepiece/GZX/photo2cartoon/photo2cartoon-master/images/cartoon_before.png", cartoon)
        # cv2.imwrite("/home/onepiece/GZX/photo2cartoon/photo2cartoon-master/images/mask_before.png", mask * 255)
        # resize back to origin size
        cartoon = cv2.resize(cartoon, (size[0], size[1]),
                             interpolation=cv2.INTER_AREA)
        mask = cv2.resize(mask * 1.1, (size[0], size[1]),
                          interpolation=cv2.INTER_AREA)[:, :,
                                                        np.newaxis].astype(
                                                            np.uint8)

        return cartoon, mask, self.pre.rect
Exemple #11
0
    parser.add_argument('--num_frames',
                        default=5,
                        type=int,
                        metavar='N',
                        help='number of frames (default: 35)')
    parser.add_argument('--lr',
                        default=1e-4,
                        type=float,
                        metavar='LR',
                        help='learning rate')

    args = parser.parse_args()

    # Defining the GAN: generator, discriminator for sequence and discriminator for frames

    G = ResnetGenerator.define_G(3, 3, 32)
    Ds = Discriminator.define_D('3', 3, 32)
    Df = Discriminator.define_D('2', 3, 32)

    # Defining the optimizers: One for the generator and one for the discriminators since they have different
    # param updates
    optimG = torch.optim.Adam(G.parameters(), args.lr, betas=(0.99, 0.99))
    optimD = torch.optim.Adam(list(Ds.parameters()) + list(Df.parameters()),
                              args.lr,
                              betas=(0.99, 0.99))

    # Define the GAN vanilla loss binary cross entropy. And since the generator output is not a Sigmoid we use
    # BCEWithLogitsLoss
    loss_func = nn.BCEWithLogitsLoss()

    # Basic resizing, normalization and channel transpose transforms
    'cpu')

if __name__ == '__main__':

    parser = argparse.ArgumentParser()
    parser.add_argument('--path',
                        default="inference",
                        type=str,
                        metavar='DIR',
                        help='path to get images')
    device = torch.device(
        'cuda') if torch.cuda.is_available() else torch.device('cpu')
    args = parser.parse_args()
    file_names = sorted(os.listdir(args.path))

    mymodel = ResnetGenerator()
    mymodel.to(device)

    os.makedirs(os.path.join("result"), exist_ok=True)
    mymodel.load_state_dict(
        torch.load(os.path.join("model_weight", 'best_weight.pt'),
                   map_location=device)['G_state_dict'])

    mymodel.eval()

    for i in range(len(file_names)):
        video = read_video(os.path.join(args.path, file_names[i]),
                           inference=True).to(device)
        with torch.no_grad():
            reconstructed = []
            for j in range(video.size(0)):
Exemple #13
0
test_set = DatasetFromFolder(root, 'test')
test_loader = DataLoader(test_set, 1, True)

if os.path.exists(check):
    print('load checkpoint')
    checkpoint = torch.load(check)
    netg_a2b = checkpoint[0]
    netg_b2a = checkpoint[1]
    netd_a = checkpoint[2]
    netd_b = checkpoint[3]
else:
    print('train from init')
    netg_a2b = ResnetGenerator(input_channel,
                               output_channel,
                               ngf=ngf,
                               n_blocks=g_layer,
                               light=light).to(device)
    netg_b2a = ResnetGenerator(input_channel,
                               output_channel,
                               ngf=ngf,
                               n_blocks=g_layer,
                               light=light).to(device)
    netd_a = Discriminator(input_channel, ndf=ndf, n_layers=d_layer).to(device)
    netd_b = Discriminator(input_channel, ndf=ndf, n_layers=d_layer).to(device)

criterionMSE = PatchLoss(nn.MSELoss()).to(device)
criterionL1 = nn.L1Loss().to(device)
criterionBCE = PatchLoss(nn.BCEWithLogitsLoss()).to(device)

optimzer_g = torch.optim.Adam(itertools.chain(netg_b2a.parameters(),
Exemple #14
0
from tqdm import tqdm
from models import StainNet, ResnetGenerator
from PIL import Image

# read source image
img_source = Image.open("assets/3_color_net_neg23570_ori.png")
# read target image
img_target = Image.open("assets/3_color_net_neg23570_target.png")
# load  pretrained StainNet
model_Net = StainNet().cuda()
model_Net.load_state_dict(
    torch.load("checkpoints/StainNet/StainNet-3x0_best_psnr_layer3_ch32.pth"))
# load  pretrained StainGAN
model_GAN = ResnetGenerator(3,
                            3,
                            ngf=64,
                            norm_layer=nn.InstanceNorm2d,
                            n_blocks=9).cuda()
model_GAN.load_state_dict(
    torch.load("checkpoints/StainGAN/latest_net_G_A.pth"))


def test_deeplearning_fps(model, n_iters, batchsize):
    data = torch.rand(batchsize, 3, 512, 512).cuda()
    start_time = time.time()
    for i in tqdm(range(n_iters)):
        with torch.no_grad():
            outputs = model(data)
    process_time = time.time() - start_time
    print("FPS is ", n_iters * batchsize / process_time)