Exemple #1
0
                span_score = span_scorer(span_emb)
            all_scores.extend(span_score.squeeze(1))

        all_scores = torch.stack(all_scores)
        all_labels = torch.stack(all_labels)

        strict_preds = (all_scores > 0).to(torch.int)
        eval = Evaluation(strict_preds, all_labels)
        logger.info('Recall: {}, Precision: {}, F1: {}'.format(
            eval.get_recall(), eval.get_precision(), eval.get_f1()))

        if config.exact:
            if eval.get_f1() > max_dev[0]:
                max_dev = (eval.get_f1(), epoch)
                torch.save(span_repr.state_dict(), span_repr_path)
                torch.save(span_scorer.state_dict(), span_scorer_path)

        else:
            eval_range = [0.2, 0.25, 0.3
                          ] if config['mention_type'] == 'events' else [
                              0.2, 0.25, 0.3, 0.4, 0.45
                          ]
            for k in eval_range:
                s, i = torch.topk(all_scores,
                                  int(k * dev_num_of_tokens),
                                  sorted=False)
                rank_preds = torch.zeros(len(all_scores), device=device)
                rank_preds[i] = 1
                eval = Evaluation(rank_preds, all_labels)
                recall = eval.get_recall()
                if recall > max_dev[0]:
Exemple #2
0
                                   [topic_spans.continuous_embeddings[k] for k in first_idx],
                                   topic_spans.width[first_idx])
                    g2 = span_repr(topic_spans.start_end_embeddings[second_idx],
                                   [topic_spans.continuous_embeddings[k] for k in second_idx],
                                   topic_spans.width[second_idx])
                    scores = pairwise_model(g1, g2)

                    if config['training_method'] in ('continue', 'e2e') and not config['use_gold_mentions']:
                        g1_score = span_scorer(g1)
                        g2_score = span_scorer(g2)
                        scores += g1_score + g2_score

                    all_scores.extend(scores.squeeze(1))
                    all_labels.extend(batch_labels.to(torch.int))

        all_labels = torch.stack(all_labels)
        all_scores = torch.stack(all_scores)


        strict_preds = (all_scores > 0).to(torch.int)
        eval = Evaluation(strict_preds, all_labels.to(device))
        logger.info('Number of predictions: {}/{}'.format(strict_preds.sum(), len(strict_preds)))
        logger.info('Number of positive pairs: {}/{}'.format(len((all_labels == 1).nonzero()),
                                                             len(all_labels)))
        logger.info('Strict - Recall: {}, Precision: {}, F1: {}'.format(eval.get_recall(),
                                                                        eval.get_precision(), eval.get_f1()))
        f1.append(eval.get_f1())

        torch.save(span_repr.state_dict(), os.path.join(config['model_path'], 'span_repr_{}'.format(epoch)))
        torch.save(span_scorer.state_dict(), os.path.join(config['model_path'], 'span_scorer_{}'.format(epoch)))
        torch.save(pairwise_model.state_dict(), os.path.join(config['model_path'], 'pairwise_scorer_{}'.format(epoch)))
Exemple #3
0
                            'e2e') and not config['use_gold_mentions']:
                        g1_score = span_scorer(g1)
                        g2_score = span_scorer(g2)
                        scores += g1_score + g2_score

                    all_scores.extend(scores.squeeze(1))
                    all_labels.extend(batch_labels.to(torch.int))

        all_labels = torch.stack(all_labels)
        all_scores = torch.stack(all_scores)

        strict_preds = (all_scores > 0).to(torch.int)
        eval = Evaluation(strict_preds, all_labels.to(device))
        logger.info('Number of predictions: {}/{}'.format(
            strict_preds.sum(), len(strict_preds)))
        logger.info('Number of positive pairs: {}/{}'.format(
            len(torch.nonzero(all_labels == 1)), len(all_labels)))
        logger.info('Strict - Recall: {}, Precision: {}, F1: {}'.format(
            eval.get_recall(), eval.get_precision(), eval.get_f1()))
        f1.append(eval.get_f1())

        torch.save(
            span_repr.state_dict(),
            os.path.join(config['model_path'], 'span_repr_{}'.format(epoch)))
        torch.save(
            span_scorer.state_dict(),
            os.path.join(config['model_path'], 'span_scorer_{}'.format(epoch)))
        torch.save(
            pairwise_model.state_dict(),
            os.path.join(config['model_path'],
                         'pairwise_scorer_{}'.format(epoch)))