def load_expert_discriminator(path): discriminator = SyncNet() print("Load sync net checkpoint from: {}".format(path)) discriminator_checkpoint = _load(path) s = discriminator_checkpoint["state_dict"] new_s = {} for k, v in s.items(): new_s[k.replace('module.', '')] = v discriminator.load_state_dict(new_s) discriminator = discriminator.to(device) return discriminator.eval()
def load_expert(path): model = SyncNet_color() print("Load checkpoint from: {}".format(path)) checkpoint = _load(path) s = checkpoint["state_dict"] new_s = {} for k, v in s.items(): new_s[k.replace('module.', '')] = v model.load_state_dict(new_s) model = model.to(device) return model.eval()
def load_model(path): model = SyncNet_color() print("Load checkpoint from: {}".format(path)) checkpoint = _load(path) s = checkpoint["state_dict"] new_s = {} for k, v in s.items(): new_s[k.replace('module.', '')] = v model.load_state_dict(new_s) model = model.to(device) for p in model.parameters(): p.reguires_grad = False return model.eval()