Exemple #1
0
def main():
    parser = OptionParser()
    parser.add_option('-j', '--workers', dest='workers', default=16, type='int',
                      help='number of data loading workers (default: 16)')
    parser.add_option('-e', '--epochs', dest='epochs', default=80, type='int',
                      help='number of epochs (default: 80)')
    parser.add_option('-b', '--batch-size', dest='batch_size', default=16, type='int',
                      help='batch size (default: 16)')
    parser.add_option('-c', '--ckpt', dest='ckpt', default=False,
                      help='load checkpoint model (default: False)')
    parser.add_option('-v', '--verbose', dest='verbose', default=100, type='int',
                      help='show information for each <verbose> iterations (default: 100)')
    parser.add_option('--lr', '--learning-rate', dest='lr', default=1e-3, type='float',
                      help='learning rate (default: 1e-3)')
    parser.add_option('--sf', '--save-freq', dest='save_freq', default=1, type='int',
                      help='saving frequency of .ckpt models (default: 1)')
    parser.add_option('--sd', '--save-dir', dest='save_dir', default='./models/wsdan/',
                      help='saving directory of .ckpt models (default: ./models/wsdan)')
    parser.add_option('--ln', '--log-name', dest='log_name', default='train.log',
                      help='log name  (default: train.log)')
    parser.add_option('--mn', '--model-name', dest='model_name', default='model.ckpt',
                      help='model name  (default:model.ckpt)')
    parser.add_option('--init', '--initial-training', dest='initial_training', default=1, type='int',
                      help='train from 1-beginning or 0-resume training (default: 1)')
 

    (options, args) = parser.parse_args()

    ##################################
    # Initialize saving directory
    ##################################
    if not os.path.exists(options.save_dir):
        os.makedirs(options.save_dir)

    ##################################
    # Logging setting
    ##################################
    logging.basicConfig(
        filename=os.path.join( options.save_dir, options.log_name),
        filemode='w',
        format='%(asctime)s: %(levelname)s: [%(filename)s:%(lineno)d]: %(message)s',
        level=logging.INFO)
    warnings.filterwarnings("ignore")

    ##################################
    # Load dataset
    ##################################
    image_size = (256,256)
    num_classes = 4
    transform = transforms.Compose([transforms.Resize(size=image_size),
                                    transforms.ToTensor(),
                                    transforms.Normalize(mean=[0.485, 0.456, 0.406], 
                                    std=[0.229, 0.224, 0.225])])
    train_dataset = CustomDataset(data_root='/mnt/HDD/RFW/train/data/',csv_file='data/RFW_Train40k_Images_Metada.csv',transform=transform)
    val_dataset = CustomDataset(data_root='/mnt/HDD/RFW/train/data/',csv_file='data/RFW_Val4k_Images_Metadata.csv',transform=transform)
    test_dataset = CustomDataset(data_root='/mnt/HDD/RFW/test/data/',csv_file='data/RFW_Test_Images_Metadata.csv',transform=transform)

    train_loader = DataLoader(train_dataset, batch_size=options.batch_size, shuffle=True,num_workers=options.workers, pin_memory=True)
    validate_loader = DataLoader(val_dataset, batch_size=options.batch_size * 4, shuffle=False,num_workers=options.workers, pin_memory=True)
    test_loader = DataLoader(test_dataset, batch_size=options.batch_size * 4, shuffle=False,num_workers=options.workers, pin_memory=True)
    
    ##################################
    # Initialize model
    ##################################
    logs = {}
    start_epoch = 0
    num_attentions = 32
    feature_net = inception_v3(pretrained=True)
    net = WSDAN(num_classes=num_classes, M=num_attentions, net='inception_mixed_6e', pretrained=True)

    # feature_center: size of (#classes, #attention_maps * #channel_features)
    feature_center = torch.zeros(num_classes, num_attentions * net.num_features).to(device)
   
    if options.ckpt:
        # Load ckpt and get state_dict
        checkpoint = torch.load(options.ckpt)

        # Get epoch and some logs
        logs = checkpoint['logs']
        start_epoch = int(logs['epoch'])

        # Load weights
        state_dict = checkpoint['state_dict']
        net.load_state_dict(state_dict)
        logging.info('Network loaded from {}'.format(options.ckpt))

        # load feature center
        if 'feature_center' in checkpoint:
            feature_center = checkpoint['feature_center'].to(device)
            logging.info('feature_center loaded from {}'.format(options.ckpt))

    logging.info('Network weights save to {}'.format(options.save_dir))
    feature_net = inception_v3(pretrained=True)
 
    if options.ckpt:
        ckpt = options.ckpt

        if options.initial_training == 0:
            # Get Name (epoch)
            epoch_name = (ckpt.split('/')[-1]).split('.')[0]
            start_epoch = int(epoch_name)

        # Load ckpt and get state_dict
        checkpoint = torch.load(ckpt)
        state_dict = checkpoint['state_dict']

        # Load weights
        net.load_state_dict(state_dict)
        logging.info('Network loaded from {}'.format(options.ckpt))

        # load feature center
        if 'feature_center' in checkpoint:
            feature_center = checkpoint['feature_center'].to(torch.device("cuda"))
            logging.info('feature_center loaded from {}'.format(options.ckpt))

      ##################################
    # Use cuda
    ##################################
    net.to(device)
    if torch.cuda.device_count() > 1:
        net = nn.DataParallel(net)

    ##################################
    # Optimizer, LR Scheduler
    ##################################
    learning_rate = logs['lr'] if 'lr' in logs else options.lr
    optimizer = torch.optim.SGD(net.parameters(), lr=learning_rate, momentum=0.9, weight_decay=1e-5)

    # scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, factor=0.9, patience=2)
    scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=2, gamma=0.9)

    ##################################
    # ModelCheckpoint
    ##################################
    callback_monitor = 'val_{}'.format(raw_metric.name)
    callback = ModelCheckpoint(savepath=os.path.join(options.save_dir, options.model_name),
                               monitor=callback_monitor,
                               mode='max')
    if callback_monitor in logs:
        callback.set_best_score(logs[callback_monitor])
    else:
        callback.reset()


    ##################################
    # TRAINING
    ##################################
    logging.info('')
    logging.info('Start training: Total epochs: {}, Batch size: {}, Training size: {}, Validation size: {}'.
                 format(options.epochs, options.batch_size, len(train_dataset), len(val_dataset)))

    for epoch in range(start_epoch, options.epochs):
        callback.on_epoch_begin()

        logs['epoch'] = epoch + 1
        logs['lr'] = optimizer.param_groups[0]['lr']

        logging.info('Epoch {:03d}, Learning Rate {:g}'.format(epoch + 1, optimizer.param_groups[0]['lr']))

        pbar = tqdm(total=len(train_loader), unit=' batches')
        pbar.set_description('Epoch {}/{}'.format(epoch + 1, options.epochs))

        train(logs=logs,
              data_loader=train_loader,
              net=net,
              feature_center=feature_center,
              optimizer=optimizer,
              pbar=pbar)
        validate(logs=logs,
                 data_loader=validate_loader,
                 net=net,
                 pbar=pbar)

        if isinstance(scheduler, torch.optim.lr_scheduler.ReduceLROnPlateau):
            scheduler.step(logs['val_loss'])
        else:
            scheduler.step()

        callback.on_epoch_end(logs, net, feature_center=feature_center)
        pbar.close()
Exemple #2
0
def main():
    ##################################
    # Initialize saving directory
    ##################################
    if not os.path.exists(config.save_dir):
        os.makedirs(config.save_dir)

    ##################################
    # Logging setting
    ##################################
    logging.basicConfig(
        filename=os.path.join(config.save_dir, config.log_name),
        filemode='w',
        format=
        '%(asctime)s: %(levelname)s: [%(filename)s:%(lineno)d]: %(message)s',
        level=logging.INFO)
    warnings.filterwarnings("ignore")

    ##################################
    # Load dataset
    ##################################
    # train_dataset, validate_dataset = get_trainval_datasets(config.tag, config.image_size)
    full_train_dataset = CarDataset('train')
    n = len(full_train_dataset)
    # train_dataset, validate_dataset = torch.utils.data.random_split(full_train_dataset, [int(n*0.8), n-int(n*0.8)])
    train_dataset = full_train_dataset
    validate_dataset = full_train_dataset
    train_loader, validate_loader = DataLoader(train_dataset, batch_size=config.batch_size, shuffle=True,
                                               num_workers=config.workers, pin_memory=True), \
                                    DataLoader(validate_dataset, batch_size=config.batch_size * 4, shuffle=False,
                                               num_workers=config.workers, pin_memory=True)
    num_classes = full_train_dataset.num_classes

    ##################################
    # Initialize model
    ##################################
    logs = {}
    start_epoch = 0
    net = WSDAN(num_classes=num_classes,
                M=config.num_attentions,
                net=config.net,
                pretrained=True)

    # feature_center: size of (#classes, #attention_maps * #channel_features)
    feature_center = torch.zeros(num_classes, config.num_attentions *
                                 net.num_features).to(device)

    if config.ckpt:
        # Load ckpt and get state_dict
        checkpoint = torch.load(config.ckpt)

        # Get epoch and some logs
        logs = checkpoint['logs']
        start_epoch = int(logs['epoch'])

        # Load weights
        state_dict = checkpoint['state_dict']
        net.load_state_dict(state_dict)
        logging.info('Network loaded from {}'.format(config.ckpt))

        # load feature center
        if 'feature_center' in checkpoint:
            feature_center = checkpoint['feature_center'].to(device)
            logging.info('feature_center loaded from {}'.format(config.ckpt))

    logging.info('Network weights save to {}'.format(config.save_dir))

    ##################################
    # Use cuda
    ##################################
    net.to(device)
    if torch.cuda.device_count() > 1:
        net = nn.DataParallel(net)

    ##################################
    # Optimizer, LR Scheduler
    ##################################
    learning_rate = logs['lr'] if 'lr' in logs else config.learning_rate
    optimizer = torch.optim.SGD(net.parameters(),
                                lr=learning_rate,
                                momentum=0.9,
                                weight_decay=1e-5)

    # scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, factor=0.9, patience=2)
    scheduler = torch.optim.lr_scheduler.StepLR(optimizer,
                                                step_size=2,
                                                gamma=0.9)

    ##################################
    # ModelCheckpoint
    ##################################
    callback_monitor = 'val_{}'.format(raw_metric.name)
    callback = ModelCheckpoint(savepath=os.path.join(config.save_dir,
                                                     config.model_name),
                               monitor=callback_monitor,
                               mode='max')
    if callback_monitor in logs:
        callback.set_best_score(logs[callback_monitor])
    else:
        callback.reset()

    ##################################
    # TRAINING
    ##################################
    logging.info(
        'Start training: Total epochs: {}, Batch size: {}, Training size: {}, Validation size: {}'
        .format(config.epochs, config.batch_size, len(train_dataset),
                len(validate_dataset)))
    logging.info('')

    for epoch in range(start_epoch, config.epochs):
        callback.on_epoch_begin()

        logs['epoch'] = epoch + 1
        logs['lr'] = optimizer.param_groups[0]['lr']

        logging.info('Epoch {:03d}, Learning Rate {:g}'.format(
            epoch + 1, optimizer.param_groups[0]['lr']))

        pbar = tqdm(total=len(train_loader), unit=' batches')
        pbar.set_description('Epoch {}/{}'.format(epoch + 1, config.epochs))

        train(logs=logs,
              data_loader=train_loader,
              net=net,
              feature_center=feature_center,
              optimizer=optimizer,
              pbar=pbar)
        validate(logs=logs, data_loader=validate_loader, net=net, pbar=pbar)

        if isinstance(scheduler, torch.optim.lr_scheduler.ReduceLROnPlateau):
            scheduler.step(logs['val_loss'])
        else:
            scheduler.step()

        callback.on_epoch_end(logs, net, feature_center=feature_center)
        pbar.close()
Exemple #3
0
    model.load_state_dict(checkpoint) 
 
if use_cuda:
    print('Using GPU')
    model.cuda()
else:
    print('Using CPU')


# optimizer = optim.Adam(model.parameters(), lr=args.lr) #momentum=args.momentum

# optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum) #momentum=args.momentum
# lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.epochs)

# optimizer = AdaBelief(model.parameters(), lr=args.lr, eps=1e-16, betas=(0.9,0.999), weight_decouple = True, rectify = False)
optimizer = RangerAdaBelief(model.parameters(), lr=args.lr, eps=1e-12, betas=(0.9,0.999))
# lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.epochs)


def train(epoch):
    # lr_scheduler.step()
    model.train()
    correct = 0
    for batch_idx, (data, target) in enumerate(train_loader):
        
        if target.numpy().any() >= 20 and target.numpy().any() < 0:
            print(target.numpy())
            continue
        if use_cuda:
            data, target = data.cuda(), target.cuda()
        optimizer.zero_grad()
Exemple #4
0
def main_worker(local_rank, ngpus_per_node, args):
    if local_rank == 0:
        logging.basicConfig(
            filename=os.path.join(settings.save_dir, settings.log_name),
            filemode='w',
            format='%(asctime)s: %(levelname)s: [%(filename)s:%(lineno)d]: '
            '%(message)s',
            level=logging.INFO)
    warnings.filterwarnings("ignore")
    dist.init_process_group(backend='nccl',
                            init_method='tcp://127.0.0.1:22465',
                            world_size=ngpus_per_node,
                            rank=local_rank)
    torch.cuda.set_device(local_rank)
    train_dataset = DfdcDataset(phase='train',
                                datapath=settings.datapath,
                                resize=settings.image_size)
    validate_dataset = DfdcDataset(phase='val',
                                   datapath=settings.datapath,
                                   resize=settings.image_size)
    train_sampler = torch.utils.data.distributed.DistributedSampler(
        train_dataset)
    validate_sampler = torch.utils.data.distributed.DistributedSampler(
        validate_dataset)
    train_loader = DataLoader(train_dataset,
                              batch_size=settings.batch_size,
                              sampler=train_sampler,
                              pin_memory=True,
                              num_workers=settings.workers)
    validate_loader = DataLoader(validate_dataset,
                                 batch_size=settings.batch_size,
                                 sampler=validate_sampler,
                                 pin_memory=True,
                                 num_workers=settings.workers)
    num_classes = train_dataset.num_classes
    logs = {}
    start_epoch = 0
    net = WSDAN(num_classes=num_classes,
                M=settings.num_attentions,
                net=settings.net,
                pretrained=settings.pretrained)
    num_features = net.num_features
    net = nn.SyncBatchNorm.convert_sync_batchnorm(net).to(local_rank)
    net = nn.parallel.DistributedDataParallel(net,
                                              device_ids=[local_rank],
                                              output_device=local_rank,
                                              find_unused_parameters=True)
    center_loss = CenterLoss().to(local_rank)
    cross_entropy_loss = nn.CrossEntropyLoss().to(local_rank)
    feature_center = torch.zeros(num_classes, settings.num_attentions *
                                 num_features).to(local_rank)

    if settings.ckpt:
        loc = 'cuda:{}'.format(local_rank)
        checkpoint = torch.load(settings.ckpt, map_location=loc)
        logs = checkpoint['logs']
        start_epoch = int(logs['epoch'])
        state_dict = checkpoint['state_dict']
        net.module.load_state_dict(state_dict)
        if 'feature_center' in checkpoint:
            feature_center = F.normalize(checkpoint['feature_center'], dim=-1)

    learning_rate = logs['lr'] if 'lr' in logs else settings.learning_rate
    optimizer = torch.optim.SGD(net.parameters(),
                                lr=learning_rate,
                                momentum=0.9,
                                weight_decay=1e-5)

    scheduler = torch.optim.lr_scheduler.StepLR(optimizer,
                                                step_size=1,
                                                gamma=0.95)
    for epoch in range(start_epoch, settings.epochs):
        logs['epoch'] = epoch + 1
        logs['lr'] = optimizer.param_groups[0]['lr']
        train_sampler.set_epoch(epoch)
        train_sampler.dataset.next_epoch()
        train(logs=logs,
              data_loader=train_loader,
              net=net,
              cross_entropy_loss=cross_entropy_loss,
              center_loss=center_loss,
              feature_center=feature_center,
              optimizer=optimizer,
              ngpus_per_node=ngpus_per_node,
              local_rank=local_rank)
        validate(logs=logs,
                 data_loader=validate_loader,
                 cross_entropy_loss=cross_entropy_loss,
                 net=net,
                 ngpus_per_node=ngpus_per_node,
                 local_rank=local_rank)
        scheduler.step()
        if local_rank == 0:
            torch.save(
                {
                    'logs': logs,
                    'state_dict': net.module.state_dict(),
                    'feature_center': feature_center
                }, settings.save_dir + 'ckpt_%s.pth' % epoch)
        dist.barrier()