Exemple #1
0
    def estimate_resid(inner_n):
        nodes = mp.warp_and_blend_nodes(dims, inner_n)
        basis = mp.orthonormal_basis_for_space(
                mp.PN(dims, inner_n), mp.Simplex(dims))
        vdm = mp.vandermonde(basis.functions, nodes)

        f = test_func(nodes[0])
        coeffs = la.solve(vdm, f)

        from modepy.modal_decay import estimate_relative_expansion_residual
        return estimate_relative_expansion_residual(
                coeffs.reshape(1, -1), dims, inner_n)
Exemple #2
0
def get_simplex_element_flip_matrix(order, unit_nodes, permutation=None):
    """
    Generate a resampling matrix that corresponds to a
    permutation of the barycentric coordinates being applied.
    The default permutation is to swap the
    first two barycentric coordinates.

    :param order: The order of the function space on the simplex,
                 (see second argument in
                  :fun:`modepy.simplex_best_available_basis`)
    :param unit_nodes: A np array of unit nodes with shape
                       *(dim, nunit_nodes)*
    :param permutation: Either *None*, or a tuple of shape
                        storing a permutation:
                        the *i*th barycentric coordinate gets mapped to
                        the *permutation[i]*th coordinate.

    :return: A numpy array of shape *(nunit_nodes, nunit_nodes)*
             which, when its transpose is right-applied
             to the matrix of nodes (shaped *(dim, nunit_nodes)*),
             corresponds to the permutation being applied
    """
    from modepy.tools import barycentric_to_unit, unit_to_barycentric

    bary_unit_nodes = unit_to_barycentric(unit_nodes)

    flipped_bary_unit_nodes = bary_unit_nodes.copy()
    if permutation is None:
        flipped_bary_unit_nodes[0, :] = bary_unit_nodes[1, :]
        flipped_bary_unit_nodes[1, :] = bary_unit_nodes[0, :]
    else:
        flipped_bary_unit_nodes[permutation, :] = bary_unit_nodes
    flipped_unit_nodes = barycentric_to_unit(flipped_bary_unit_nodes)

    dim = unit_nodes.shape[0]
    shape = mp.Simplex(dim)
    space = mp.PN(dim, order)
    basis = mp.basis_for_space(space, shape)
    flip_matrix = mp.resampling_matrix(basis.functions, flipped_unit_nodes,
                                       unit_nodes)

    flip_matrix[np.abs(flip_matrix) < 1e-15] = 0

    # Flipping twice should be the identity
    if permutation is None:
        assert la.norm(
            np.dot(flip_matrix, flip_matrix) -
            np.eye(len(flip_matrix))) < 1e-13

    return flip_matrix
Exemple #3
0
def test_diff_matrix_permutation(dims):
    order = 5
    space = mp.PN(dims, order)

    from pytools import \
            generate_nonnegative_integer_tuples_summing_to_at_most as gnitstam
    node_tuples = list(gnitstam(order, dims))

    simplex_onb = mp.orthonormal_basis_for_space(space, mp.Simplex(dims))
    nodes = np.array(mp.warp_and_blend_nodes(dims, order, node_tuples=node_tuples))
    diff_matrices = mp.differentiation_matrices(
            simplex_onb.functions, simplex_onb.gradients, nodes)

    for iref_axis in range(dims):
        perm = mp.diff_matrix_permutation(node_tuples, iref_axis)

        assert la.norm(
                diff_matrices[iref_axis]
                - diff_matrices[0][perm][:, perm]) < 1e-10
Exemple #4
0
def test_modal_decay(case_name, test_func, dims, n, expected_expn):
    space = mp.PN(dims, n)
    nodes = mp.warp_and_blend_nodes(dims, n)
    basis = mp.orthonormal_basis_for_space(space, mp.Simplex(dims))
    vdm = mp.vandermonde(basis.functions, nodes)

    f = test_func(nodes[0])
    coeffs = la.solve(vdm, f)

    if 0:
        from modepy.tools import plot_element_values
        plot_element_values(n, nodes, f, resample_n=70,
                show_nodes=True)

    from modepy.modal_decay import fit_modal_decay
    expn, _ = fit_modal_decay(coeffs.reshape(1, -1), dims, n)
    expn = expn[0]

    print(f"{case_name}: computed: {expn:g}, expected: {expected_expn:g}")
    assert abs(expn-expected_expn) < 0.1
Exemple #5
0
 def space(self):
     return mp.PN(self.dim, self.order)
Exemple #6
0
 def from_mesh_interp_matrix(self):
     meg = self.mesh_el_group
     meg_space = mp.PN(meg.dim, meg.order)
     return mp.resampling_matrix(
         mp.basis_for_space(meg_space, self._shape).functions,
         self.unit_nodes, meg.unit_nodes)