def q10(lineitem, orders, customer, nation):
    t1 = time.time()
    date1 = pd.Timestamp("1994-11-01")
    date2 = pd.Timestamp("1995-02-01")
    osel = (orders.O_ORDERDATE >= date1) & (orders.O_ORDERDATE < date2)
    lsel = lineitem.L_RETURNFLAG == "R"
    forders = orders[osel]
    flineitem = lineitem[lsel]
    jn1 = flineitem.merge(forders, left_on="L_ORDERKEY", right_on="O_ORDERKEY")
    jn2 = jn1.merge(customer, left_on="O_CUSTKEY", right_on="C_CUSTKEY")
    jn3 = jn2.merge(nation, left_on="C_NATIONKEY", right_on="N_NATIONKEY")
    jn3["TMP"] = jn3.L_EXTENDEDPRICE * (1.0 - jn3.L_DISCOUNT)
    gb = jn3.groupby(
        [
            "C_CUSTKEY",
            "C_NAME",
            "C_ACCTBAL",
            "C_PHONE",
            "N_NAME",
            "C_ADDRESS",
            "C_COMMENT",
        ],
        as_index=False,
    )["TMP"].sum()
    total = gb.sort_values("TMP", ascending=False)
    print(total.head(20))
    print("Q10 Execution time (s): ", time.time() - t1)
def q20(lineitem, part, nation, partsupp, supplier):
    t1 = time.time()
    date1 = pd.Timestamp("1996-01-01")
    date2 = pd.Timestamp("1997-01-01")
    psel = part.P_NAME.str.startswith("azure")
    nsel = nation.N_NAME == "JORDAN"
    lsel = (lineitem.L_SHIPDATE >= date1) & (lineitem.L_SHIPDATE < date2)
    fpart = part[psel]
    fnation = nation[nsel]
    flineitem = lineitem[lsel]
    jn1 = fpart.merge(partsupp, left_on="P_PARTKEY", right_on="PS_PARTKEY")
    jn2 = jn1.merge(
        flineitem,
        left_on=["PS_PARTKEY", "PS_SUPPKEY"],
        right_on=["L_PARTKEY", "L_SUPPKEY"],
    )
    gb = jn2.groupby(["PS_PARTKEY", "PS_SUPPKEY", "PS_AVAILQTY"], as_index=False)[
        "L_QUANTITY"
    ].sum()
    gbsel = gb.PS_AVAILQTY > (0.5 * gb.L_QUANTITY)
    fgb = gb[gbsel]
    jn3 = fgb.merge(supplier, left_on="PS_SUPPKEY", right_on="S_SUPPKEY")
    jn4 = fnation.merge(jn3, left_on="N_NATIONKEY", right_on="S_NATIONKEY")
    jn4 = jn4.loc[:, ["S_NAME", "S_ADDRESS"]]
    total = jn4.sort_values("S_NAME").drop_duplicates()
    print(total)
    print("Q20 Execution time (s): ", time.time() - t1)
def q15(lineitem, supplier):
    t1 = time.time()
    lineitem_filtered = lineitem[
        (lineitem["L_SHIPDATE"] >= pd.Timestamp('1996-01-01'))
        & (lineitem["L_SHIPDATE"] <
           (pd.Timestamp('1996-01-01') + pd.DateOffset(months=3)))]
    lineitem_filtered["REVENUE_PARTS"] = lineitem_filtered[
        "L_EXTENDEDPRICE"] * (1.0 - lineitem_filtered["L_DISCOUNT"])
    lineitem_filtered = lineitem_filtered.loc[:,
                                              ["L_SUPPKEY", "REVENUE_PARTS"]]
    revenue_table = lineitem_filtered.groupby(
        "L_SUPPKEY", as_index=False).agg(TOTAL_REVENUE=pd.NamedAgg(
            column="REVENUE_PARTS", aggfunc="sum")).rename(
                columns={"L_SUPPKEY": "SUPPLIER_NO"}, copy=False)
    max_revenue = revenue_table["TOTAL_REVENUE"].max()
    revenue_table = revenue_table[revenue_table["TOTAL_REVENUE"] ==
                                  max_revenue]
    supplier_filtered = supplier.loc[:, [
        "S_SUPPKEY", "S_NAME", "S_ADDRESS", "S_PHONE"
    ]]
    total = supplier_filtered.merge(revenue_table,
                                    left_on="S_SUPPKEY",
                                    right_on="SUPPLIER_NO",
                                    how="inner")
    total = total.loc[:, [
        "S_SUPPKEY", "S_NAME", "S_ADDRESS", "S_PHONE", "TOTAL_REVENUE"
    ]]
    print(total)
    print("Q15 Execution time (s): ", time.time() - t1)
def q12(lineitem, orders):
    t1 = time.time()
    date1 = pd.Timestamp("1994-01-01")
    date2 = pd.Timestamp("1995-01-01")
    sel = (
        (lineitem.L_RECEIPTDATE < date2)
        & (lineitem.L_COMMITDATE < date2)
        & (lineitem.L_SHIPDATE < date2)
        & (lineitem.L_SHIPDATE < lineitem.L_COMMITDATE)
        & (lineitem.L_COMMITDATE < lineitem.L_RECEIPTDATE)
        & (lineitem.L_RECEIPTDATE >= date1)
        & ((lineitem.L_SHIPMODE == "MAIL") | (lineitem.L_SHIPMODE == "SHIP"))
    )
    flineitem = lineitem[sel]
    jn = flineitem.merge(orders, left_on="L_ORDERKEY", right_on="O_ORDERKEY")

    def g1(x):
        return ((x == "1-URGENT") | (x == "2-HIGH")).sum()

    def g2(x):
        return ((x != "1-URGENT") & (x != "2-HIGH")).sum()

    total = jn.groupby("L_SHIPMODE", as_index=False)["O_ORDERPRIORITY"].agg((g1, g2))
    total = total.sort_values("L_SHIPMODE")
    print(total)
    print("Q12 Execution time (s): ", time.time() - t1)
Exemple #5
0
def test_mixed_type_sort():
    df = pd.DataFrame({
        "Mixed": [pd.Timestamp("2017-02-02"), np.nan, 1e10, 5, "hey"],
        1: [5, 4, "hello", 2, 1],
    })

    spreadsheet = SpreadsheetWidget(df=df)

    spreadsheet._handle_view_msg_helper({
        "type": "change_sort",
        "sort_field": "Mixed",
        "sort_ascending": True
    })

    expected_order_mixed = [1e10, pd.Timestamp("2017-02-02"), 5, "hey", np.nan]
    sorted_order_mixed = list(spreadsheet.get_changed_df()["Mixed"])
    assert expected_order_mixed[:4] == sorted_order_mixed[:4]
    # np.nan != np.nan by definition, so check if value at index 4 are both np.nan
    assert np.isnan(expected_order_mixed[4]) and np.isnan(
        sorted_order_mixed[4])

    # check sorting on number column names works
    spreadsheet._handle_view_msg_helper({
        "type": "change_sort",
        "sort_field": 1,
        "sort_ascending": True
    })
    expected_order_1 = [1, 2, 4, 5, "hello"]
    sorted_order_1 = list(spreadsheet.get_changed_df()[1])
    assert expected_order_1 == sorted_order_1
Exemple #6
0
def test_edit_date():
    view = SpreadsheetWidget(df=create_df())
    check_edit_success(
        view,
        "Date",
        3,
        pd.Timestamp("2013-01-02 00:00:00"),
        "2013-01-02T00:00:00.000Z",
        pd.Timestamp("2013-01-16 00:00:00"),
        "2013-01-16T00:00:00.000Z",
    )
Exemple #7
0
def test_squeeze():
    frame_data = {
        "col1": [0, 1, 2, 3],
        "col2": [4, 5, 6, 7],
        "col3": [8, 9, 10, 11],
        "col4": [12, 13, 14, 15],
        "col5": [0, 0, 0, 0],
    }
    frame_data_2 = {"col1": [0, 1, 2, 3]}
    frame_data_3 = {
        "col1": [0],
        "col2": [4],
        "col3": [8],
        "col4": [12],
        "col5": [0],
    }
    frame_data_4 = {"col1": [2]}
    frame_data_5 = {"col1": ["string"]}
    # Different data for different cases
    pandas_df = pandas.DataFrame(frame_data).squeeze()
    modin_df = pd.DataFrame(frame_data).squeeze()
    df_equals(modin_df, pandas_df)

    pandas_df_2 = pandas.DataFrame(frame_data_2).squeeze()
    modin_df_2 = pd.DataFrame(frame_data_2).squeeze()
    df_equals(modin_df_2, pandas_df_2)

    pandas_df_3 = pandas.DataFrame(frame_data_3).squeeze()
    modin_df_3 = pd.DataFrame(frame_data_3).squeeze()
    df_equals(modin_df_3, pandas_df_3)

    pandas_df_4 = pandas.DataFrame(frame_data_4).squeeze()
    modin_df_4 = pd.DataFrame(frame_data_4).squeeze()
    df_equals(modin_df_4, pandas_df_4)

    pandas_df_5 = pandas.DataFrame(frame_data_5).squeeze()
    modin_df_5 = pd.DataFrame(frame_data_5).squeeze()
    df_equals(modin_df_5, pandas_df_5)

    data = [
        [
            pd.Timestamp("2019-01-02"),
            pd.Timestamp("2019-01-03"),
            pd.Timestamp("2019-01-04"),
            pd.Timestamp("2019-01-05"),
        ],
        [1, 1, 1, 2],
    ]
    df = pd.DataFrame(data, index=["date", "value"]).T
    pf = pandas.DataFrame(data, index=["date", "value"]).T
    df.set_index("date", inplace=True)
    pf.set_index("date", inplace=True)
    df_equals(df.iloc[0], pf.iloc[0])
def q04(lineitem, orders):
    t1 = time.time()
    date1 = pd.Timestamp("1993-11-01")
    date2 = pd.Timestamp("1993-08-01")
    lsel = lineitem.L_COMMITDATE < lineitem.L_RECEIPTDATE
    osel = (orders.O_ORDERDATE < date1) & (orders.O_ORDERDATE >= date2)
    flineitem = lineitem[lsel]
    forders = orders[osel]
    jn = forders[forders["O_ORDERKEY"].isin(flineitem["L_ORDERKEY"])]
    total = (jn.groupby("O_ORDERPRIORITY",
                        as_index=False)["O_ORDERKEY"].count().sort_values(
                            ["O_ORDERPRIORITY"]))
    print(total)
    print("Q04 Execution time (s): ", time.time() - t1)
def q14(lineitem, part):
    t1 = time.time()
    startDate = pd.Timestamp("1994-03-01")
    endDate = pd.Timestamp("1994-04-01")
    p_type_like = "PROMO"
    part_filtered = part.loc[:, ["P_PARTKEY", "P_TYPE"]]
    lineitem_filtered = lineitem.loc[:, ["L_EXTENDEDPRICE", "L_DISCOUNT", "L_SHIPDATE", "L_PARTKEY"]]
    sel = (lineitem_filtered.L_SHIPDATE >= startDate) & (lineitem_filtered.L_SHIPDATE < endDate)
    flineitem = lineitem_filtered[sel]
    jn = flineitem.merge(part_filtered, left_on="L_PARTKEY", right_on="P_PARTKEY")
    jn["TMP"] = jn.L_EXTENDEDPRICE * (1.0 - jn.L_DISCOUNT)
    total = jn[jn.P_TYPE.str.startswith(p_type_like)].TMP.sum() * 100 / jn.TMP.sum()
    print(total)
    print("Q14 Execution time (s): ", time.time() - t1)
def q03(lineitem, orders, customer):
    t1 = time.time()
    date = pd.Timestamp("1995-03-04")
    lineitem_filtered = lineitem.loc[:, ["L_ORDERKEY", "L_EXTENDEDPRICE", "L_DISCOUNT", "L_SHIPDATE"]]
    orders_filtered = orders.loc[:, ["O_ORDERKEY", "O_CUSTKEY", "O_ORDERDATE", "O_SHIPPRIORITY"]]
    customer_filtered = customer.loc[:, ["C_MKTSEGMENT", "C_CUSTKEY"]]
    lsel = lineitem_filtered.L_SHIPDATE > date
    osel = orders_filtered.O_ORDERDATE < date
    csel = customer_filtered.C_MKTSEGMENT == "HOUSEHOLD"
    flineitem = lineitem_filtered[lsel]
    forders = orders_filtered[osel]
    fcustomer = customer_filtered[csel]
    jn1 = fcustomer.merge(forders, left_on="C_CUSTKEY", right_on="O_CUSTKEY")
    jn2 = jn1.merge(flineitem, left_on="O_ORDERKEY", right_on="L_ORDERKEY")
    jn2["TMP"] = jn2.L_EXTENDEDPRICE * (1 - jn2.L_DISCOUNT)
    total = (
        jn2.groupby(["L_ORDERKEY", "O_ORDERDATE", "O_SHIPPRIORITY"], as_index=False)[
            "TMP"
        ]
        .sum()
        .sort_values(["TMP"], ascending=False)
    )
    res = total.loc[:, ["L_ORDERKEY", "TMP", "O_ORDERDATE", "O_SHIPPRIORITY"]]
    print(res.head(10))
    print("Q03 Execution time (s): ", time.time() - t1)
def q06(lineitem):
    t1 = time.time()
    date1 = pd.Timestamp("1996-01-01")
    date2 = pd.Timestamp("1997-01-01")
    lineitem_filtered = lineitem.loc[:, ["L_QUANTITY", "L_EXTENDEDPRICE", "L_DISCOUNT", "L_SHIPDATE"]]
    sel = (
        (lineitem_filtered.L_SHIPDATE >= date1)
        & (lineitem_filtered.L_SHIPDATE < date2)
        & (lineitem_filtered.L_DISCOUNT >= 0.08)
        & (lineitem_filtered.L_DISCOUNT <= 0.1)
        & (lineitem_filtered.L_QUANTITY < 24)
    )
    flineitem = lineitem_filtered[sel]
    total = (flineitem.L_EXTENDEDPRICE * flineitem.L_DISCOUNT).sum()
    print(total)
    print("Q06 Execution time (s): ", time.time() - t1)
Exemple #12
0
def test_add_row_button():
    widget = SpreadsheetWidget(df=create_df())
    event_history = init_event_history("row_added", widget=widget)

    widget._handle_view_msg_helper({"type": "add_row"})

    assert event_history == [{
        "name": "row_added",
        "index": 4,
        "source": "gui"
    }]

    # make sure the added row in the internal dataframe contains the
    # expected values
    added_index = event_history[0]["index"]
    expected_values = pd.Series({
        "modin_spreadsheet_unfiltered_index": 4,
        "A": 1,
        "C": 1,
        "D": 3,
        "Date": pd.Timestamp("2013-01-02 00:00:00"),
        "E": "bar",
        "F": "fox",
    })
    sort_idx = widget._df.loc[added_index].index
    assert (widget._df.loc[added_index] == expected_values[sort_idx]).all()
Exemple #13
0
def test_to_datetime():
    # DataFrame input for to_datetime
    modin_df = pd.DataFrame({
        "year": [2015, 2016],
        "month": [2, 3],
        "day": [4, 5]
    })
    pandas_df = pandas.DataFrame({
        "year": [2015, 2016],
        "month": [2, 3],
        "day": [4, 5]
    })
    df_equals(pd.to_datetime(modin_df), pandas.to_datetime(pandas_df))

    # Series input for to_datetime
    modin_s = pd.Series(["3/11/2000", "3/12/2000", "3/13/2000"] * 1000)
    pandas_s = pandas.Series(["3/11/2000", "3/12/2000", "3/13/2000"] * 1000)
    df_equals(pd.to_datetime(modin_s), pandas.to_datetime(pandas_s))

    # Other inputs for to_datetime
    value = 1490195805
    assert pd.to_datetime(value, unit="s") == pandas.to_datetime(value,
                                                                 unit="s")
    value = 1490195805433502912
    assert pd.to_datetime(value, unit="ns") == pandas.to_datetime(value,
                                                                  unit="ns")
    value = [1, 2, 3]
    assert pd.to_datetime(
        value, unit="D", origin=pd.Timestamp("2000-01-01")).equals(
            pandas.to_datetime(value,
                               unit="D",
                               origin=pandas.Timestamp("2000-01-01")))
Exemple #14
0
def get_test_data():
    return {
        "A": 1.0,
        "B": pd.Timestamp("20130102"),
        "C": pd.Series(1, index=list(range(4)), dtype="float32"),
        "D": np.array([3] * 4, dtype="int32"),
        "E": pd.Categorical(["test", "train", "foo", "bar"]),
        "F": ["foo", "bar", "buzz", "fox"],
    }
def q05(lineitem, orders, customer, nation, region, supplier):
    t1 = time.time()
    date1 = pd.Timestamp("1996-01-01")
    date2 = pd.Timestamp("1997-01-01")
    rsel = region.R_NAME == "ASIA"
    osel = (orders.O_ORDERDATE >= date1) & (orders.O_ORDERDATE < date2)
    forders = orders[osel]
    fregion = region[rsel]
    jn1 = fregion.merge(nation, left_on="R_REGIONKEY", right_on="N_REGIONKEY")
    jn2 = jn1.merge(customer, left_on="N_NATIONKEY", right_on="C_NATIONKEY")
    jn3 = jn2.merge(forders, left_on="C_CUSTKEY", right_on="O_CUSTKEY")
    jn4 = jn3.merge(lineitem, left_on="O_ORDERKEY", right_on="L_ORDERKEY")
    jn5 = supplier.merge(
        jn4, left_on=["S_SUPPKEY", "S_NATIONKEY"], right_on=["L_SUPPKEY", "N_NATIONKEY"]
    )
    jn5["TMP"] = jn5.L_EXTENDEDPRICE * (1.0 - jn5.L_DISCOUNT)
    gb = jn5.groupby("N_NAME", as_index=False)["TMP"].sum()
    total = gb.sort_values("TMP", ascending=False)
    print("Q05 Execution time (s): ", time.time() - t1)
Exemple #16
0
def create_interval_index_df():
    td = np.cumsum(np.random.randint(1, 15 * 60, 1000))
    start = pd.Timestamp("2017-04-17")
    df = pd.DataFrame(
        [(start + pd.Timedelta(seconds=d)) for d in td],
        columns=["time"],
        dtype="M8[ns]",
    )

    df["time_bin"] = np.cumsum(np.random.randint(1, 15 * 60, 1000))
    return df
Exemple #17
0
def test_to_datetime():
    value = 1490195805
    assert pd.to_datetime(value, unit="s") == pandas.to_datetime(value,
                                                                 unit="s")
    value = 1490195805433502912
    assert pd.to_datetime(value, unit="ns") == pandas.to_datetime(value,
                                                                  unit="ns")
    value = [1, 2, 3]
    assert pd.to_datetime(
        value, unit="D", origin=pd.Timestamp("2000-01-01")).equals(
            pandas.to_datetime(value,
                               unit="D",
                               origin=pandas.Timestamp("2000-01-01")))
Exemple #18
0
def test_nans():
    df = pd.DataFrame([(pd.Timestamp("2017-02-02"), np.nan), (4, 2),
                       ("foo", "bar")])
    view = SpreadsheetWidget(df=df)
    view._handle_view_msg_helper({
        "type": "change_sort",
        "sort_field": 1,
        "sort_ascending": True
    })
    view._handle_view_msg_helper({
        "type": "show_filter_dropdown",
        "field": 1,
        "search_val": None
    })
def q07(lineitem, supplier, orders, customer, nation):
    """ This version is faster than q07_old. Keeping the old one for reference """
    t1 = time.time()

    lineitem_filtered = lineitem[(lineitem["L_SHIPDATE"] >= pd.Timestamp("1995-01-01")) & (lineitem["L_SHIPDATE"] < pd.Timestamp("1997-01-01"))]
    lineitem_filtered["L_YEAR"] = lineitem_filtered["L_SHIPDATE"].apply(lambda x: x.year)
    lineitem_filtered["VOLUME"] = lineitem_filtered["L_EXTENDEDPRICE"] * (1.0 - lineitem_filtered["L_DISCOUNT"])
    lineitem_filtered = lineitem_filtered.loc[:, ["L_ORDERKEY", "L_SUPPKEY", "L_YEAR", "VOLUME"]]
    supplier_filtered = supplier.loc[:, ["S_SUPPKEY", "S_NATIONKEY"]]
    orders_filtered = orders.loc[:, ["O_ORDERKEY", "O_CUSTKEY"]]
    customer_filtered = customer.loc[:, ["C_CUSTKEY", "C_NATIONKEY"]]
    n1 = nation[(nation["N_NAME"] == "FRANCE")].loc[:, ["N_NATIONKEY", "N_NAME"]]
    n2 = nation[(nation["N_NAME"] == "GERMANY")].loc[:, ["N_NATIONKEY", "N_NAME"]]

    # ----- do nation 1 -----
    N1_C = customer_filtered.merge(n1, left_on='C_NATIONKEY', right_on='N_NATIONKEY', how='inner')
    N1_C = N1_C.drop(columns=["C_NATIONKEY", "N_NATIONKEY"]).rename(columns={"N_NAME": "CUST_NATION"})
    N1_C_O = N1_C.merge(orders_filtered, left_on='C_CUSTKEY', right_on='O_CUSTKEY', how='inner')
    N1_C_O = N1_C_O.drop(columns=["C_CUSTKEY", "O_CUSTKEY"])

    # NOTE: this is faster than first merging lineitem with N1_C_O
    N2_S = supplier_filtered.merge(n2, left_on='S_NATIONKEY', right_on='N_NATIONKEY', how='inner')
    N2_S = N2_S.drop(columns=["S_NATIONKEY", "N_NATIONKEY"]).rename(columns={"N_NAME": "SUPP_NATION"})
    N2_S_L = N2_S.merge(lineitem_filtered, left_on='S_SUPPKEY', right_on='L_SUPPKEY', how='inner')
    N2_S_L = N2_S_L.drop(columns=["S_SUPPKEY", "L_SUPPKEY"])

    total1 = N1_C_O.merge(N2_S_L, left_on='O_ORDERKEY', right_on='L_ORDERKEY', how='inner')
    total1 = total1.drop(columns=["O_ORDERKEY", "L_ORDERKEY"])

    # ----- do nation 2 ----- (same as nation 1 section but with nation 2)
    N2_C = customer_filtered.merge(n2, left_on='C_NATIONKEY', right_on='N_NATIONKEY', how='inner')
    N2_C = N2_C.drop(columns=["C_NATIONKEY", "N_NATIONKEY"]).rename(columns={"N_NAME": "CUST_NATION"})
    N2_C_O = N2_C.merge(orders_filtered, left_on='C_CUSTKEY', right_on='O_CUSTKEY', how='inner')
    N2_C_O = N2_C_O.drop(columns=["C_CUSTKEY", "O_CUSTKEY"])

    N1_S = supplier_filtered.merge(n1, left_on='S_NATIONKEY', right_on='N_NATIONKEY', how='inner')
    N1_S = N1_S.drop(columns=["S_NATIONKEY", "N_NATIONKEY"]).rename(columns={"N_NAME": "SUPP_NATION"})
    N1_S_L = N1_S.merge(lineitem_filtered, left_on='S_SUPPKEY', right_on='L_SUPPKEY', how='inner')
    N1_S_L = N1_S_L.drop(columns=["S_SUPPKEY", "L_SUPPKEY"])

    total2 = N2_C_O.merge(N1_S_L, left_on='O_ORDERKEY', right_on='L_ORDERKEY', how='inner')
    total2 = total2.drop(columns=["O_ORDERKEY", "L_ORDERKEY"])

    # concat results
    total = pd.concat([total1, total2])

    total = total.groupby(["SUPP_NATION", "CUST_NATION", "L_YEAR"], as_index = False).agg(REVENUE=pd.NamedAgg(column="VOLUME", aggfunc="sum"))
    total = total.sort_values(by=["SUPP_NATION","CUST_NATION","L_YEAR"], ascending=[True,True,True,])
    print(total)
    print("Q07 Execution time (s): ", time.time() - t1)
Exemple #20
0
def create_df():
    return pd.DataFrame({
        "A":
        1.0,
        "Date":
        pd.Timestamp("20130102"),
        "C":
        pd.Series(1, index=list(range(4)), dtype="float32"),
        "D":
        np.array([3] * 4, dtype="int32"),
        "E":
        pd.Categorical(["test", "train", "foo", "bar"]),
        "F": ["foo", "bar", "buzz", "fox"],
    })
Exemple #21
0
def test_unique():
    modin_result = pd.unique([2, 1, 3, 3])
    pandas_result = pandas.unique([2, 1, 3, 3])
    assert_array_equal(modin_result, pandas_result)

    modin_result = pd.unique(pd.Series([2] + [1] * 5))
    pandas_result = pandas.unique(pandas.Series([2] + [1] * 5))
    assert_array_equal(modin_result, pandas_result)

    modin_result = pd.unique(
        pd.Series([pd.Timestamp("20160101"), pd.Timestamp("20160101")])
    )
    pandas_result = pandas.unique(
        pandas.Series([pandas.Timestamp("20160101"), pandas.Timestamp("20160101")])
    )
    assert_array_equal(modin_result, pandas_result)

    modin_result = pd.unique(
        pd.Series(
            [
                pd.Timestamp("20160101", tz="US/Eastern"),
                pd.Timestamp("20160101", tz="US/Eastern"),
            ]
        )
    )
    pandas_result = pandas.unique(
        pandas.Series(
            [
                pandas.Timestamp("20160101", tz="US/Eastern"),
                pandas.Timestamp("20160101", tz="US/Eastern"),
            ]
        )
    )
    assert_array_equal(modin_result, pandas_result)

    modin_result = pd.unique(
        pd.Index(
            [
                pd.Timestamp("20160101", tz="US/Eastern"),
                pd.Timestamp("20160101", tz="US/Eastern"),
            ]
        )
    )
    pandas_result = pandas.unique(
        pandas.Index(
            [
                pandas.Timestamp("20160101", tz="US/Eastern"),
                pandas.Timestamp("20160101", tz="US/Eastern"),
            ]
        )
    )
    assert_array_equal(modin_result, pandas_result)

    modin_result = pd.unique(pd.Series(pd.Categorical(list("baabc"))))
    pandas_result = pandas.unique(pandas.Series(pandas.Categorical(list("baabc"))))
    assert_array_equal(modin_result, pandas_result)
Exemple #22
0
def q01(lineitem):
    t1 = time.time()
    date = pd.Timestamp("1998-09-02")
    print(list(lineitem.columns.values))
    lineitem_filtered = lineitem.loc[:, [
        "L_ORDERKEY", "L_QUANTITY", "L_EXTENDEDPRICE", "L_DISCOUNT", "L_TAX",
        "L_RETURNFLAG", "L_LINESTATUS", "L_SHIPDATE"
    ]]
    sel = lineitem_filtered.L_SHIPDATE <= date
    lineitem_filtered = lineitem_filtered[sel]
    lineitem_filtered["AVG_QTY"] = lineitem_filtered.L_QUANTITY
    lineitem_filtered["AVG_PRICE"] = lineitem_filtered.L_EXTENDEDPRICE
    lineitem_filtered["DISC_PRICE"] = lineitem_filtered.L_EXTENDEDPRICE * (
        1 - lineitem_filtered.L_DISCOUNT)
    lineitem_filtered["CHARGE"] = (lineitem_filtered.L_EXTENDEDPRICE *
                                   (1 - lineitem_filtered.L_DISCOUNT) *
                                   (1 + lineitem_filtered.L_TAX))
    #ray needs double square bracket
    gb = lineitem_filtered.groupby(["L_RETURNFLAG", "L_LINESTATUS"],
                                   as_index=False)[[
                                       "L_ORDERKEY",
                                       "L_QUANTITY",
                                       "L_EXTENDEDPRICE",
                                       "L_DISCOUNT",
                                       "AVG_QTY",
                                       "AVG_PRICE",
                                       "CHARGE",
                                       "DISC_PRICE",
                                   ]]
    total = gb.agg({
        "L_QUANTITY": "sum",
        "L_EXTENDEDPRICE": "sum",
        "DISC_PRICE": "sum",
        "CHARGE": "sum",
        "AVG_QTY": "mean",
        "AVG_PRICE": "mean",
        "L_DISCOUNT": "mean",
        "L_ORDERKEY": "count",
    })
    total = total.sort_values(["L_RETURNFLAG", "L_LINESTATUS"])
    print(total)
    print("Q01 Execution time (s): ", time.time() - t1)
def q08(part, lineitem, supplier, orders, customer, nation, region):
    t1 = time.time()
    part_filtered = part[(part["P_TYPE"] == "ECONOMY ANODIZED STEEL")]
    part_filtered = part_filtered.loc[:, ["P_PARTKEY"]]
    lineitem_filtered = lineitem.loc[:, ["L_PARTKEY", "L_SUPPKEY", "L_ORDERKEY"]]
    lineitem_filtered["VOLUME"] = lineitem["L_EXTENDEDPRICE"] * (1.0 - lineitem["L_DISCOUNT"])
    total = part_filtered.merge(lineitem_filtered, left_on="P_PARTKEY", right_on="L_PARTKEY", how="inner")
    total = total.loc[:, ["L_SUPPKEY", "L_ORDERKEY", "VOLUME"]]
    supplier_filtered = supplier.loc[:, ["S_SUPPKEY", "S_NATIONKEY"]]
    total = total.merge(supplier_filtered, left_on="L_SUPPKEY", right_on="S_SUPPKEY", how="inner")
    total = total.loc[:, ["L_ORDERKEY", "VOLUME", "S_NATIONKEY"]]
    orders_filtered = orders[(orders["O_ORDERDATE"] >= pd.Timestamp("1995-01-01")) & (orders["O_ORDERDATE"] < pd.Timestamp("1997-01-01"))]
    orders_filtered["O_YEAR"] = orders_filtered["O_ORDERDATE"].apply(lambda x: x.year)
    orders_filtered = orders_filtered.loc[:, ["O_ORDERKEY", "O_CUSTKEY", "O_YEAR"]]
    total = total.merge(orders_filtered, left_on="L_ORDERKEY", right_on="O_ORDERKEY", how="inner")
    total = total.loc[:, ["VOLUME", "S_NATIONKEY", "O_CUSTKEY", "O_YEAR"]]
    customer_filtered = customer.loc[:, ["C_CUSTKEY", "C_NATIONKEY"]]
    total = total.merge(customer_filtered, left_on="O_CUSTKEY", right_on="C_CUSTKEY", how="inner")
    total = total.loc[:, ["VOLUME", "S_NATIONKEY", "O_YEAR", "C_NATIONKEY"]]
    n1_filtered = nation.loc[:, ["N_NATIONKEY", "N_REGIONKEY"]]
    n2_filtered = nation.loc[:, ["N_NATIONKEY", "N_NAME"]].rename(columns={"N_NAME": "NATION"})
    total = total.merge(n1_filtered, left_on="C_NATIONKEY", right_on="N_NATIONKEY", how="inner")
    total = total.loc[:, ["VOLUME", "S_NATIONKEY", "O_YEAR", "N_REGIONKEY"]]
    total = total.merge(n2_filtered, left_on="S_NATIONKEY", right_on="N_NATIONKEY", how="inner")
    total = total.loc[:, ["VOLUME", "O_YEAR", "N_REGIONKEY", "NATION"]]
    region_filtered = region[(region["R_NAME"] == "AMERICA")]
    region_filtered = region_filtered.loc[:, ["R_REGIONKEY"]]
    total = total.merge(region_filtered, left_on="N_REGIONKEY", right_on="R_REGIONKEY", how="inner")
    total = total.loc[:, ["VOLUME", "O_YEAR", "NATION"]]

    def udf(df):
        demonimator = df["VOLUME"].sum()
        df = df[df["NATION"] == "BRAZIL"]
        numerator = df["VOLUME"].sum()
        return numerator / demonimator

    #modin returns empty column with as_index=false
    total = total.groupby("O_YEAR").apply(udf).reset_index()
    total.columns = ["O_YEAR", "MKT_SHARE"]
    total = total.sort_values(by=["O_YEAR",], ascending=[True,])
    print(total)
    print("Q08 Execution time (s): ", time.time() - t1)
Exemple #24
0
def test_merge_asof_merge_options():
    modin_quotes = pd.DataFrame(
        {
            "time": [
                pd.Timestamp("2016-05-25 13:30:00.023"),
                pd.Timestamp("2016-05-25 13:30:00.023"),
                pd.Timestamp("2016-05-25 13:30:00.030"),
                pd.Timestamp("2016-05-25 13:30:00.041"),
                pd.Timestamp("2016-05-25 13:30:00.048"),
                pd.Timestamp("2016-05-25 13:30:00.049"),
                pd.Timestamp("2016-05-25 13:30:00.072"),
                pd.Timestamp("2016-05-25 13:30:00.075"),
            ],
            "ticker": ["GOOG", "MSFT", "MSFT", "MSFT", "GOOG", "AAPL", "GOOG", "MSFT"],
            "bid": [720.50, 51.95, 51.97, 51.99, 720.50, 97.99, 720.50, 52.01],
            "ask": [720.93, 51.96, 51.98, 52.00, 720.93, 98.01, 720.88, 52.03],
        }
    )
    modin_trades = pd.DataFrame(
        {
            "time": [
                pd.Timestamp("2016-05-25 13:30:00.023"),
                pd.Timestamp("2016-05-25 13:30:00.038"),
                pd.Timestamp("2016-05-25 13:30:00.048"),
                pd.Timestamp("2016-05-25 13:30:00.048"),
                pd.Timestamp("2016-05-25 13:30:00.048"),
            ],
            "ticker2": ["MSFT", "MSFT", "GOOG", "GOOG", "AAPL"],
            "price": [51.95, 51.95, 720.77, 720.92, 98.0],
            "quantity": [75, 155, 100, 100, 100],
        }
    )
    pandas_quotes, pandas_trades = to_pandas(modin_quotes), to_pandas(modin_trades)

    # left_by + right_by
    df_equals(
        pandas.merge_asof(
            pandas_quotes,
            pandas_trades,
            on="time",
            left_by="ticker",
            right_by="ticker2",
        ),
        pd.merge_asof(
            modin_quotes,
            modin_trades,
            on="time",
            left_by="ticker",
            right_by="ticker2",
        ),
    )

    # Just by:
    pandas_trades["ticker"] = pandas_trades["ticker2"]
    modin_trades["ticker"] = modin_trades["ticker2"]
    df_equals(
        pandas.merge_asof(
            pandas_quotes,
            pandas_trades,
            on="time",
            by="ticker",
        ),
        pd.merge_asof(
            modin_quotes,
            modin_trades,
            on="time",
            by="ticker",
        ),
    )

    # Tolerance
    df_equals(
        pandas.merge_asof(
            pandas_quotes,
            pandas_trades,
            on="time",
            by="ticker",
            tolerance=pd.Timedelta("2ms"),
        ),
        pd.merge_asof(
            modin_quotes,
            modin_trades,
            on="time",
            by="ticker",
            tolerance=pd.Timedelta("2ms"),
        ),
    )

    # Direction
    df_equals(
        pandas.merge_asof(
            pandas_quotes,
            pandas_trades,
            on="time",
            by="ticker",
            direction="forward",
        ),
        pd.merge_asof(
            modin_quotes,
            modin_trades,
            on="time",
            by="ticker",
            direction="forward",
        ),
    )

    # Allow exact matches
    df_equals(
        pandas.merge_asof(
            pandas_quotes,
            pandas_trades,
            on="time",
            by="ticker",
            tolerance=pd.Timedelta("10ms"),
            allow_exact_matches=False,
        ),
        pd.merge_asof(
            modin_quotes,
            modin_trades,
            on="time",
            by="ticker",
            tolerance=pd.Timedelta("10ms"),
            allow_exact_matches=False,
        ),
    )