Exemple #1
0
def evaluate4svm(labels, feats, params={'c': 1, 'kernal': 'gauss'}, Nsplit=2):
    """
        Run Cross-validation to evaluate the SVM.

        Parameters
        ----------
        labels: 2d array
            Data set labels.
        feats: array
            Data set feats.
        params: dictionary
            Search scope parameters.
        Nsplit: int, default = 2
            The n for n-fold cross validation.
    """
    c = params.get('c')
    if params.get('kernal' == 'gauss'):
        kernal = GaussianKernel()
        kernal.set_width(80)
    elif params.get('kernal' == 'sigmoid'):
        kernal = SigmoidKernel()
    else:
        kernal = LinearKernel()

    split = CrossValidationSplitting(labels, Nsplit)
    split.build_subsets()

    accuracy = np.zeros(Nsplit)
    time_test = np.zeros(accuracy.shape)
    for i in range(Nsplit):
        idx_train = split.generate_subset_inverse(i)
        idx_test = split.generate_subset_indices(i)

        feats.add_subset(idx_train)
        labels.add_subset(idx_train)
        print c, kernal, labels

        svm = GMNPSVM(c, kernal, labels)
        _ = svm.train(feats)
        out = svm.apply(feats_test)
        evaluator = MulticlassAccuracy()
        accuracy[i] = evaluator.evaluate(out, labels_test)

        feats.remove_subset()
        labels.remove_subset()
        feats.add_subset(idx_test)
        labels.add_subset(idx_test)

        t_start = time.clock()
        time_test[i] = (time.clock() - t_start) / labels.get_num_labels()
        feats.remove_subset()
        labels.remove_subset()
    return accuracy
def classifier_gmnpsvm_modular (train_fname=traindat,test_fname=testdat,label_fname=label_traindat,width=2.1,C=1,epsilon=1e-5):
	from modshogun import RealFeatures, MulticlassLabels
	from modshogun import GaussianKernel, GMNPSVM, CSVFile

	feats_train=RealFeatures(CSVFile(train_fname))
	feats_test=RealFeatures(CSVFile(test_fname))
	labels=MulticlassLabels(CSVFile(label_fname))

	kernel=GaussianKernel(feats_train, feats_train, width)

	svm=GMNPSVM(C, kernel, labels)
	svm.set_epsilon(epsilon)
	svm.train(feats_train)

	out=svm.apply(feats_test).get_labels()
	return out,kernel
def classifier_gmnpsvm_modular(train_fname=traindat,
                               test_fname=testdat,
                               label_fname=label_traindat,
                               width=2.1,
                               C=1,
                               epsilon=1e-5):
    from modshogun import RealFeatures, MulticlassLabels
    from modshogun import GaussianKernel, GMNPSVM, CSVFile

    feats_train = RealFeatures(CSVFile(train_fname))
    feats_test = RealFeatures(CSVFile(test_fname))
    labels = MulticlassLabels(CSVFile(label_fname))

    kernel = GaussianKernel(feats_train, feats_train, width)

    svm = GMNPSVM(C, kernel, labels)
    svm.set_epsilon(epsilon)
    svm.train(feats_train)

    out = svm.apply(feats_test).get_labels()
    return out, kernel
Exemple #4
0
class Ai:
    def __init__(self):
        self.x = None
        self.y = None

        self.x_test = None
        self.y_test = None

        self.svm = None

    def load_train_data(self, x_fname, y_fname):
        Ai.__init__(self)

        self.x = np.loadtxt(x_fname)
        self.y = np.loadtxt(y_fname) - 1.0

        self.x_test = self.x
        self.y_test = self.y

    def _svm_new(self, kernel_width, c, epsilon):
        if self.x == None or self.y == None:
            raise Exception("No training data loaded.")

        x = RealFeatures(self.x)
        y = Labels(self.y)

        self.svm = GMNPSVM(c, GaussianKernel(x, x, kernel_width), y)
        self.svm.set_epsilon(epsilon)

    def write_svm(self):
        gz_stream = gz.open(com.TRAIN_SVM_FNAME_GZ, 'wb', 9)
        pkl.dump(self.svm, gz_stream)
        gz_stream.close()

    def read_svm(self):
        gz_stream = gz.open(com.TRAIN_SVM_FNAME_GZ, 'rb')
        self.svm = pkl.load(gz_stream)
        gz_stream.close()

    def enable_validation(self, train_frac):
        x = self.x
        y = self.y

        idx = np.arange(len(y))
        np.random.shuffle(idx)
        train_idx = idx[:np.floor(train_frac * len(y))]
        test_idx = idx[np.ceil(train_frac * len(y)):]

        self.x = x[:, train_idx]
        self.y = y[train_idx]
        self.x_test = x[:, test_idx]
        self.y_test = y[test_idx]

    def train(self, kernel_width, c, epsilon):
        self._svm_new(kernel_width, c, epsilon)

        x = RealFeatures(self.x)
        self.svm.io.enable_progress()
        self.svm.train(x)
        self.svm.io.disable_progress()

    def load_classifier(self):
        self.read_svm()

    def classify(self, matrix):
        cl = self.svm.apply(
            RealFeatures(
                np.reshape(matrix, newshape=(com.FEATURE_DIM, 1),
                           order='F'))).get_label(0)

        return int(cl + 1.0) % 10

    def get_test_error(self):
        self.svm.io.enable_progress()
        l = self.svm.apply(RealFeatures(self.x_test)).get_labels()
        self.svm.io.disable_progress()

        return 1.0 - np.mean(l == self.y_test)
Exemple #5
0
class Ai:
    def __init__(self):
        self.x = None
        self.y = None

        self.x_test = None
        self.y_test = None

        self.svm = None

    def load_train_data(self, x_fname, y_fname):
        Ai.__init__(self)

        self.x = np.loadtxt(x_fname)
        self.y = np.loadtxt(y_fname) - 1.0

        self.x_test = self.x
        self.y_test = self.y

    def _svm_new(self, kernel_width, c, epsilon):
        if self.x == None or self.y == None:
            raise Exception("No training data loaded.")

        x = RealFeatures(self.x)
        y = MulticlassLabels(self.y)

        self.svm = GMNPSVM(c, GaussianKernel(x, x, kernel_width), y)
        self.svm.set_epsilon(epsilon)

    def write_svm(self):
        gz_stream = gz.open(com.TRAIN_SVM_FNAME_GZ, 'wb', 9)
        pkl.dump(self.svm, gz_stream)
        gz_stream.close()

    def read_svm(self):
        gz_stream = gz.open(com.TRAIN_SVM_FNAME_GZ, 'rb')
        self.svm = pkl.load(gz_stream)
        gz_stream.close()

    def enable_validation(self, train_frac):
        x = self.x
        y = self.y

        idx = np.arange(len(y))
        np.random.shuffle(idx)
        train_idx=idx[:np.floor(train_frac*len(y))]
        test_idx=idx[np.ceil(train_frac*len(y)):]

        self.x = x[:,train_idx]
        self.y = y[train_idx]
        self.x_test = x[:,test_idx]
        self.y_test = y[test_idx]

    def train(self, kernel_width, c, epsilon):
        self._svm_new(kernel_width, c, epsilon)

        x = RealFeatures(self.x)
        self.svm.io.enable_progress()
        self.svm.train(x)
        self.svm.io.disable_progress()

    def load_classifier(self): self.read_svm()

    def classify(self, matrix):
        cl = self.svm.apply(
            RealFeatures(
                np.reshape(matrix, newshape=(com.FEATURE_DIM, 1),
                           order='F')
                )
            ).get_label(0)

        return int(cl + 1.0) % 10

    def get_test_error(self):
        self.svm.io.enable_progress()
        l = self.svm.apply(RealFeatures(self.x_test)).get_labels()
        self.svm.io.disable_progress()

        return 1.0 - np.mean(l == self.y_test)