Exemple #1
0
    def RunKPCAShogun():
      totalTimer = Timer()

      try:
        # Load input dataset.
        Log.Info("Loading dataset", self.verbose)
        data = np.genfromtxt(self.dataset, delimiter=',')
        dataFeat = RealFeatures(data.T)

        with totalTimer:
          # Get the new dimensionality, if it is necessary.
          if "new_dimensionality" in options:
            d = int(options.pop("new_dimensionality"))
            if (d > data.shape[1]):
              Log.Fatal("New dimensionality (" + str(d) + ") cannot be greater "
                + "than existing dimensionality (" + str(data.shape[1]) + ")!")
              return -1
          else:
            d = data.shape[1]

          # Get the kernel type and make sure it is valid.
          if "kernel" in options:
            kernel = str(options.pop("kernel"))
          else:
            Log.Fatal("Choose kernel type, valid choices are 'linear'," +
                  " 'hyptan', 'polynomial' and 'gaussian'.")
            return -1

          if "degree" in options:
            degree = int(options.pop("degree"))

          if len(options) > 0:
            Log.Fatal("Unknown parameters: " + str(options))
            raise Exception("unknown parameters")

          if kernel == "polynomial":
            kernel = PolyKernel(dataFeat, dataFeat, degree, True)
          elif kernel == "gaussian":
            kernel = GaussianKernel(dataFeat, dataFeat, 2.0)
          elif kernel == "linear":
            kernel = LinearKernel(dataFeat, dataFeat)
          elif kernel == "hyptan":
            kernel = SigmoidKernel(dataFeat, dataFeat, 2, 1.0, 1.0)
          else:
            Log.Fatal("Invalid kernel type (" + kernel.group(1) + "); valid "
              + "choices are 'linear', 'hyptan', 'polynomial' and 'gaussian'.")
            return -1

          # Perform Kernel Principal Components Analysis.
          model = KernelPCA(kernel)
          model.set_target_dim(d)
          model.init(dataFeat)
          model.apply_to_feature_matrix(dataFeat)
      except Exception as e:
        return -1

      return totalTimer.ElapsedTime()
    def RunKPCAShogun(q):
      totalTimer = Timer()

      try:
        # Load input dataset.
        Log.Info("Loading dataset", self.verbose)
        data = np.genfromtxt(self.dataset, delimiter=',')
        dataFeat = RealFeatures(data.T)

        with totalTimer:
          # Get the new dimensionality, if it is necessary.
          dimension = re.search('-d (\d+)', options)
          if not dimension:
            d = data.shape[1]
          else:
            d = int(dimension.group(1))
            if (d > data.shape[1]):
              Log.Fatal("New dimensionality (" + str(d) + ") cannot be greater "
                + "than existing dimensionality (" + str(data.shape[1]) + ")!")
              q.put(-1)
              return -1

          # Get the kernel type and make sure it is valid.
          kernel = re.search("-k ([^\s]+)", options)
          if not kernel:
              Log.Fatal("Choose kernel type, valid choices are 'linear'," +
                    " 'hyptan', 'polynomial' and 'gaussian'.")
              q.put(-1)
              return -1
          elif kernel.group(1) == "polynomial":
            degree = re.search('-D (\d+)', options)
            degree = 1 if not degree else int(degree.group(1))

            kernel = PolyKernel(dataFeat, dataFeat, degree, True)
          elif kernel.group(1) == "gaussian":
            kernel = GaussianKernel(dataFeat, dataFeat, 2.0)
          elif kernel.group(1) == "linear":
            kernel = LinearKernel(dataFeat, dataFeat)
          elif kernel.group(1) == "hyptan":
            kernel = SigmoidKernel(dataFeat, dataFeat, 2, 1.0, 1.0)
          else:
            Log.Fatal("Invalid kernel type (" + kernel.group(1) + "); valid "
              + "choices are 'linear', 'hyptan', 'polynomial' and 'gaussian'.")
            q.put(-1)
            return -1

          # Perform Kernel Principal Components Analysis.
          model = KernelPCA(kernel)
          model.set_target_dim(d)
          model.init(dataFeat)
          model.apply_to_feature_matrix(dataFeat)
      except Exception as e:
        q.put(-1)
        return -1

      time = totalTimer.ElapsedTime()
      q.put(time)
      return time
def preprocessor_kernelpca_modular(data, threshold, width):

    from modshogun import RealFeatures
    from modshogun import KernelPCA
    from modshogun import GaussianKernel

    features = RealFeatures(data)
    kernel = GaussianKernel(features, features, width)
    preprocessor = KernelPCA(kernel)
    preprocessor.init(features)
    preprocessor.set_target_dim(2)
    # X=preprocessor.get_transformation_matrix()
    X2 = preprocessor.apply_to_feature_matrix(features)
    lx0 = len(X2)
    modified_d1 = zeros((lx0, number_of_points_for_circle1))
    modified_d2 = zeros((lx0, number_of_points_for_circle2))
    modified_d1 = [X2[i][0:number_of_points_for_circle1] for i in range(lx0)]
    modified_d2 = [
        X2[i][number_of_points_for_circle1 : (number_of_points_for_circle1 + number_of_points_for_circle2)]
        for i in range(lx0)
    ]
    p.plot(modified_d1[0][:], modified_d1[1][:], "o", modified_d2[0][:], modified_d2[1][:], "x")
    p.title("final data")
    p.show()
    return features
def preprocessor_kernelpca_modular (data, threshold, width):
	from modshogun import RealFeatures
	from modshogun import KernelPCA
	from modshogun import GaussianKernel

	features = RealFeatures(data)

	kernel = GaussianKernel(features,features,width)

	preprocessor = KernelPCA(kernel)
	preprocessor.init(features)
	preprocessor.set_target_dim(2)
	preprocessor.apply_to_feature_matrix(features)

	return features
Exemple #5
0
def preprocessor_kernelpca_modular (data, threshold, width):

	from modshogun import RealFeatures
	from modshogun import KernelPCA
	from modshogun import GaussianKernel
	features = RealFeatures(data)
	kernel=GaussianKernel(features,features,width)
	preprocessor=KernelPCA(kernel)
	preprocessor.init(features)
	preprocessor.set_target_dim(2)
	#X=preprocessor.get_transformation_matrix()
	X2=preprocessor.apply_to_feature_matrix(features)
	lx0=len(X2)
	modified_d1=zeros((lx0,number_of_points_for_circle1))
	modified_d2=zeros((lx0,number_of_points_for_circle2))
	modified_d1=[X2[i][0:number_of_points_for_circle1] for i in range(lx0)]
	modified_d2=[X2[i][number_of_points_for_circle1:(number_of_points_for_circle1+number_of_points_for_circle2)] for i in range(lx0)]
	p.plot(modified_d1[0][:],modified_d1[1][:],'o',modified_d2[0][:],modified_d2[1][:],'x')
	p.title('final data')
	p.show()
	return features
Exemple #6
0
        def RunKPCAShogun(q):
            totalTimer = Timer()

            try:
                # Load input dataset.
                Log.Info("Loading dataset", self.verbose)
                data = np.genfromtxt(self.dataset, delimiter=',')
                dataFeat = RealFeatures(data.T)

                with totalTimer:
                    # Get the new dimensionality, if it is necessary.
                    dimension = re.search('-d (\d+)', options)
                    if not dimension:
                        d = data.shape[1]
                    else:
                        d = int(dimension.group(1))
                        if (d > data.shape[1]):
                            Log.Fatal("New dimensionality (" + str(d) +
                                      ") cannot be greater " +
                                      "than existing dimensionality (" +
                                      str(data.shape[1]) + ")!")
                            q.put(-1)
                            return -1

                    # Get the kernel type and make sure it is valid.
                    kernel = re.search("-k ([^\s]+)", options)
                    if not kernel:
                        Log.Fatal(
                            "Choose kernel type, valid choices are 'linear'," +
                            " 'hyptan', 'polynomial' and 'gaussian'.")
                        q.put(-1)
                        return -1
                    elif kernel.group(1) == "polynomial":
                        degree = re.search('-D (\d+)', options)
                        degree = 1 if not degree else int(degree.group(1))

                        kernel = PolyKernel(dataFeat, dataFeat, degree, True)
                    elif kernel.group(1) == "gaussian":
                        kernel = GaussianKernel(dataFeat, dataFeat, 2.0)
                    elif kernel.group(1) == "linear":
                        kernel = LinearKernel(dataFeat, dataFeat)
                    elif kernel.group(1) == "hyptan":
                        kernel = SigmoidKernel(dataFeat, dataFeat, 2, 1.0, 1.0)
                    else:
                        Log.Fatal(
                            "Invalid kernel type (" + kernel.group(1) +
                            "); valid " +
                            "choices are 'linear', 'hyptan', 'polynomial' and 'gaussian'."
                        )
                        q.put(-1)
                        return -1

                    # Perform Kernel Principal Components Analysis.
                    model = KernelPCA(kernel)
                    model.set_target_dim(d)
                    model.init(dataFeat)
                    model.apply_to_feature_matrix(dataFeat)
            except Exception as e:
                q.put(-1)
                return -1

            time = totalTimer.ElapsedTime()
            q.put(time)
            return time