def features_dense_modular (A=matrixA,B=matrixB,C=matrixC): a=RealFeatures(A) b=LongIntFeatures(B) c=ByteFeatures(C) # or 16bit wide ... #feat1 = f.ShortFeatures(N.zeros((10,5),N.short)) #feat2 = f.WordFeatures(N.zeros((10,5),N.uint16)) # print(some statistics about a) # get first feature vector and set it a.set_feature_vector(array([1,4,0,0,0,9], dtype=float64), 0) # get matrices a_out = a.get_feature_matrix() b_out = b.get_feature_matrix() c_out = c.get_feature_matrix() assert(all(a_out==A)) assert(all(b_out==B)) assert(all(c_out==C)) return a_out,b_out,c_out,a,b,c
def features_dense_longint_modular (A=matrix): a=LongIntFeatures(A) # get first feature vector and set it a.set_feature_vector(array([1,4,0,0,0,9], dtype=int64), 0) # get matrix a_out = a.get_feature_matrix() assert(all(a_out==A)) return a_out
def features_string_hashed_wd_modular(A=matrix, order=3, start_order=1, hash_bits=2): a = LongIntFeatures(A) from numpy import array, uint8 from modshogun import HashedWDFeatures, StringByteFeatures, RAWDNA from modshogun import MSG_DEBUG x = [array([0, 1, 2, 3, 0, 1, 2, 3, 3, 2, 2, 1, 1], dtype=uint8)] from_order = order f = StringByteFeatures(RAWDNA) #f.io.set_loglevel(MSG_DEBUG) f.set_features(x) y = HashedWDFeatures(f, start_order, order, from_order, hash_bits) fm = y.get_computed_dot_feature_matrix() return fm