def distribution_hmm_modular(fm_cube, N, M, pseudo, order, gap, reverse, num_examples):
	from modshogun import StringWordFeatures, StringCharFeatures, CUBE
	from modshogun import HMM, BW_NORMAL

	charfeat=StringCharFeatures(CUBE)
	charfeat.set_features(fm_cube)
	feats=StringWordFeatures(charfeat.get_alphabet())
	feats.obtain_from_char(charfeat, order-1, order, gap, reverse)

	hmm=HMM(feats, N, M, pseudo)
	hmm.train()
	hmm.baum_welch_viterbi_train(BW_NORMAL)

	num_examples=feats.get_num_vectors()
	num_param=hmm.get_num_model_parameters()
	for i in range(num_examples):
		for j in range(num_param):
			hmm.get_log_derivative(j, i)

	best_path=0
	best_path_state=0
	for i in range(num_examples):
		best_path+=hmm.best_path(i)
		for j in range(N):
			best_path_state+=hmm.get_best_path_state(i, j)

	lik_example = hmm.get_log_likelihood()
	lik_sample = hmm.get_log_likelihood_sample()

	return lik_example, lik_sample, hmm
def distribution_linearhmm_modular (fm_dna=traindna,order=3,gap=0,reverse=False):

	from modshogun import StringWordFeatures, StringCharFeatures, DNA
	from modshogun import LinearHMM

	charfeat=StringCharFeatures(DNA)
	charfeat.set_features(fm_dna)
	feats=StringWordFeatures(charfeat.get_alphabet())
	feats.obtain_from_char(charfeat, order-1, order, gap, reverse)

	hmm=LinearHMM(feats)
	hmm.train()

	hmm.get_transition_probs()

	num_examples=feats.get_num_vectors()
	num_param=hmm.get_num_model_parameters()
	for i in range(num_examples):
		for j in range(num_param):
			hmm.get_log_derivative(j, i)

	out_likelihood = hmm.get_log_likelihood()
	out_sample = hmm.get_log_likelihood_sample()

	return hmm,out_likelihood ,out_sample
Exemple #3
0
def distribution_linearhmm_modular(fm_dna=traindna,
                                   order=3,
                                   gap=0,
                                   reverse=False):

    from modshogun import StringWordFeatures, StringCharFeatures, DNA
    from modshogun import LinearHMM

    charfeat = StringCharFeatures(DNA)
    charfeat.set_features(fm_dna)
    feats = StringWordFeatures(charfeat.get_alphabet())
    feats.obtain_from_char(charfeat, order - 1, order, gap, reverse)

    hmm = LinearHMM(feats)
    hmm.train()

    hmm.get_transition_probs()

    num_examples = feats.get_num_vectors()
    num_param = hmm.get_num_model_parameters()
    for i in range(num_examples):
        for j in range(num_param):
            hmm.get_log_derivative(j, i)

    out_likelihood = hmm.get_log_likelihood()
    out_sample = hmm.get_log_likelihood_sample()

    return hmm, out_likelihood, out_sample
def kernel_histogram_word_string_modular (fm_train_dna=traindat,fm_test_dna=testdat,label_train_dna=label_traindat,order=3,ppseudo_count=1,npseudo_count=1):

	from modshogun import StringCharFeatures, StringWordFeatures, DNA, BinaryLabels
	from modshogun import HistogramWordStringKernel, AvgDiagKernelNormalizer
	from modshogun import PluginEstimate#, MSG_DEBUG

	charfeat=StringCharFeatures(DNA)
	#charfeat.io.set_loglevel(MSG_DEBUG)
	charfeat.set_features(fm_train_dna)
	feats_train=StringWordFeatures(charfeat.get_alphabet())
	feats_train.obtain_from_char(charfeat, order-1, order, 0, False)

	charfeat=StringCharFeatures(DNA)
	charfeat.set_features(fm_test_dna)
	feats_test=StringWordFeatures(charfeat.get_alphabet())
	feats_test.obtain_from_char(charfeat, order-1, order, 0, False)

	pie=PluginEstimate(ppseudo_count,npseudo_count)
	labels=BinaryLabels(label_train_dna)
	pie.set_labels(labels)
	pie.set_features(feats_train)
	pie.train()

	kernel=HistogramWordStringKernel(feats_train, feats_train, pie)
	km_train=kernel.get_kernel_matrix()
	kernel.init(feats_train, feats_test)
	pie.set_features(feats_test)
	pie.apply().get_labels()
	km_test=kernel.get_kernel_matrix()
	return km_train,km_test,kernel
def kernel_salzberg_word_string_modular(fm_train_dna=traindat,
                                        fm_test_dna=testdat,
                                        label_train_dna=label_traindat,
                                        order=3,
                                        gap=0,
                                        reverse=False):
    from modshogun import StringCharFeatures, StringWordFeatures, DNA, BinaryLabels
    from modshogun import SalzbergWordStringKernel
    from modshogun import PluginEstimate

    charfeat = StringCharFeatures(fm_train_dna, DNA)
    feats_train = StringWordFeatures(charfeat.get_alphabet())
    feats_train.obtain_from_char(charfeat, order - 1, order, gap, reverse)

    charfeat = StringCharFeatures(fm_test_dna, DNA)
    feats_test = StringWordFeatures(charfeat.get_alphabet())
    feats_test.obtain_from_char(charfeat, order - 1, order, gap, reverse)

    pie = PluginEstimate()
    labels = BinaryLabels(label_train_dna)
    pie.set_labels(labels)
    pie.set_features(feats_train)
    pie.train()

    kernel = SalzbergWordStringKernel(feats_train, feats_train, pie, labels)
    km_train = kernel.get_kernel_matrix()

    kernel.init(feats_train, feats_test)
    pie.set_features(feats_test)
    pie.apply().get_labels()
    km_test = kernel.get_kernel_matrix()
    return km_train, km_test, kernel
Exemple #6
0
def kernel_poly_match_word_string_modular(fm_train_dna=traindat,
                                          fm_test_dna=testdat,
                                          degree=2,
                                          inhomogene=True,
                                          order=3,
                                          gap=0,
                                          reverse=False):
    from modshogun import PolyMatchWordStringKernel
    from modshogun import StringWordFeatures, StringCharFeatures, DNA

    charfeat = StringCharFeatures(fm_train_dna, DNA)
    feats_train = StringWordFeatures(DNA)
    feats_train.obtain_from_char(charfeat, order - 1, order, gap, reverse)

    charfeat = StringCharFeatures(fm_test_dna, DNA)
    feats_test = StringWordFeatures(DNA)
    feats_test.obtain_from_char(charfeat, order - 1, order, gap, reverse)

    kernel = PolyMatchWordStringKernel(feats_train, feats_train, degree,
                                       inhomogene)

    km_train = kernel.get_kernel_matrix()
    kernel.init(feats_train, feats_test)
    km_test = kernel.get_kernel_matrix()
    return km_train, km_test, kernel
Exemple #7
0
def kernel_match_word_string_modular(fm_train_dna=traindat,
                                     fm_test_dna=testdat,
                                     degree=3,
                                     scale=1.4,
                                     size_cache=10,
                                     order=3,
                                     gap=0,
                                     reverse=False):
    from modshogun import MatchWordStringKernel, AvgDiagKernelNormalizer
    from modshogun import StringWordFeatures, StringCharFeatures, DNA

    charfeat = StringCharFeatures(fm_train_dna, DNA)
    feats_train = StringWordFeatures(DNA)
    feats_train.obtain_from_char(charfeat, order - 1, order, gap, reverse)

    charfeat = StringCharFeatures(fm_test_dna, DNA)
    feats_test = StringWordFeatures(DNA)
    feats_test.obtain_from_char(charfeat, order - 1, order, gap, reverse)

    kernel = MatchWordStringKernel(size_cache, degree)
    kernel.set_normalizer(AvgDiagKernelNormalizer(scale))
    kernel.init(feats_train, feats_train)

    km_train = kernel.get_kernel_matrix()
    kernel.init(feats_train, feats_test)
    km_test = kernel.get_kernel_matrix()
    return km_train, km_test, kernel
def get_kernel_mat(fm_train_dna, fm_test_dna, N, M,
		pseudo=1e-1,order=1,gap=0,reverse=False):

	# train HMM for positive class
	print "hmm training"
	charfeat=StringCharFeatures(fm_train_dna, DNA)
	#charfeat.io.set_loglevel(MSG_DEBUG)
	hmm_train=StringWordFeatures(charfeat.get_alphabet())
	hmm_train.obtain_from_char(charfeat, order-1, order, gap, reverse)
	pos=HMM(hmm_train, N, M, pseudo)
	pos.baum_welch_viterbi_train(BW_NORMAL)
	neg = HMM(pos)

	print "Kernel training data"
	charfeat=StringCharFeatures(fm_train_dna, DNA)
	wordfeats_train=StringWordFeatures(charfeat.get_alphabet())
	wordfeats_train.obtain_from_char(charfeat, order-1, order, gap, reverse)

	print "Kernel testing data"
	charfeat=StringCharFeatures(fm_test_dna, DNA)
	wordfeats_test=StringWordFeatures(charfeat.get_alphabet())
	wordfeats_test.obtain_from_char(charfeat, order-1, order, gap, reverse)

	print "get kernel on training data"
	pos.set_observations(wordfeats_train)
	neg.set_observations(wordfeats_train)
	feats_train=FKFeatures(10, pos, neg)
	feats_train.set_opt_a(-1) #estimate prior
	
	print 'getting feature matrix'
	v0 = feats_train.get_feature_vector(0)
	v1 = feats_train.get_feature_vector(1)
	print np.dot(v0, v1)
	kernel=LinearKernel(feats_train, feats_train)
	#kernel=PolyKernel(feats_train, feats_train, *kargs)
	km_train=kernel.get_kernel_matrix()
	print km_train.shape, km_train[0, 1]

	print "get kernel on testing data"
	pos_clone=HMM(pos)
	neg_clone=HMM(neg)
	pos_clone.set_observations(wordfeats_test)
	neg_clone.set_observations(wordfeats_test)
	feats_test=FKFeatures(10, pos_clone, neg_clone)
	feats_test.set_a(feats_train.get_a()) #use prior from training data
	kernel.init(feats_train, feats_test)
	km_test=kernel.get_kernel_matrix()
	return km_train,km_test,kernel
def kernel_histogram_word_string_modular (fm_train_dna=traindat,fm_test_dna=testdat,label_train_dna=label_traindat,order=3,gap=0,reverse=False):

	from modshogun import StringCharFeatures, StringWordFeatures, DNA, BinaryLabels
	from modshogun import HistogramWordStringKernel
	from modshogun import PluginEstimate#, MSG_DEBUG

	reverse = reverse
	charfeat=StringCharFeatures(DNA)
	#charfeat.io.set_loglevel(MSG_DEBUG)
	charfeat.set_features(fm_train_dna)
	feats_train=StringWordFeatures(charfeat.get_alphabet())
	feats_train.obtain_from_char(charfeat, order-1, order, gap, reverse)

	charfeat=StringCharFeatures(DNA)
	charfeat.set_features(fm_test_dna)
	feats_test=StringWordFeatures(charfeat.get_alphabet())
	feats_test.obtain_from_char(charfeat, order-1, order, gap, reverse)

	pie=PluginEstimate()
	labels=BinaryLabels(label_train_dna)
	pie.set_labels(labels)
	pie.set_features(feats_train)
	pie.train()

	kernel=HistogramWordStringKernel(feats_train, feats_train, pie)
	km_train=kernel.get_kernel_matrix()
	kernel.init(feats_train, feats_test)
	pie.set_features(feats_test)
	pie.apply().get_labels()
	km_test=kernel.get_kernel_matrix()
	return km_train,km_test,kernel
def get_spectrum_features(data, order=3, gap=0, reverse=True):
    """
	create feature object used by spectrum kernel
	"""

    charfeat = StringCharFeatures(data, PROTEIN)
    feat = StringWordFeatures(charfeat.get_alphabet())
    feat.obtain_from_char(charfeat, order - 1, order, gap, reverse)
    preproc = SortWordString()
    preproc.init(feat)
    feat.add_preprocessor(preproc)
    feat.apply_preprocessor()

    return feat
def distribution_histogram_modular(fm_dna=traindna, order=3, gap=0, reverse=False):
    from modshogun import StringWordFeatures, StringCharFeatures, DNA
    from modshogun import Histogram

    charfeat = StringCharFeatures(DNA)
    charfeat.set_features(fm_dna)
    feats = StringWordFeatures(charfeat.get_alphabet())
    feats.obtain_from_char(charfeat, order - 1, order, gap, reverse)

    histo = Histogram(feats)
    histo.train()

    histo.get_histogram()

    num_examples = feats.get_num_vectors()
    num_param = histo.get_num_model_parameters()
    # for i in xrange(num_examples):
    # 	for j in xrange(num_param):
    # 		histo.get_log_derivative(j, i)

    out_likelihood = histo.get_log_likelihood()
    out_sample = histo.get_log_likelihood_sample()
    return histo, out_sample, out_likelihood
def distribution_histogram_modular (fm_dna=traindna,order=3,gap=0,reverse=False):
	from modshogun import StringWordFeatures, StringCharFeatures, DNA
	from modshogun import Histogram

	charfeat=StringCharFeatures(DNA)
	charfeat.set_features(fm_dna)
	feats=StringWordFeatures(charfeat.get_alphabet())
	feats.obtain_from_char(charfeat, order-1, order, gap, reverse)

	histo=Histogram(feats)
	histo.train()

	histo.get_histogram()

	num_examples=feats.get_num_vectors()
	num_param=histo.get_num_model_parameters()
	#for i in xrange(num_examples):
	#	for j in xrange(num_param):
	#		histo.get_log_derivative(j, i)

	out_likelihood = histo.get_log_likelihood()
	out_sample = histo.get_log_likelihood_sample()
	return histo,out_sample,out_likelihood
def get_spectrum_features(data, order=3, gap=0, reverse=True):
    """
    create feature object used by spectrum kernel
    """

    charfeat = StringCharFeatures(data, DNA)
    feat = StringWordFeatures(charfeat.get_alphabet())
    feat.obtain_from_char(charfeat, order-1, order, gap, reverse)
    preproc = SortWordString()
    preproc.init(feat)
    feat.add_preprocessor(preproc)
    feat.apply_preprocessor()

    return feat
Exemple #14
0
def features_string_word_modular (strings, start, order, gap, rev):
	from modshogun import StringCharFeatures, StringWordFeatures, RAWBYTE
	from numpy import array, uint16

	#create string features
	cf=StringCharFeatures(strings, RAWBYTE)
	wf=StringWordFeatures(RAWBYTE)

	wf.obtain_from_char(cf, start, order, gap, rev)

	#and output several stats
	#print("max string length", wf.get_max_vector_length())
	#print("number of strings", wf.get_num_vectors())
	#print("length of first string", wf.get_vector_length(0))
	#print("string[2]", wf.get_feature_vector(2))
	#print("strings", wf.get_features())

	#replace string 0
	wf.set_feature_vector(array([1,2,3,4,5], dtype=uint16), 0)

	#print("strings", wf.get_features())
	return wf.get_features(), wf
def kernel_match_word_string_modular (fm_train_dna=traindat,fm_test_dna=testdat,
degree=3,scale=1.4,size_cache=10,order=3,gap=0,reverse=False):
	from modshogun import MatchWordStringKernel, AvgDiagKernelNormalizer
	from modshogun import StringWordFeatures, StringCharFeatures, DNA

	charfeat=StringCharFeatures(fm_train_dna, DNA)
	feats_train=StringWordFeatures(DNA)
	feats_train.obtain_from_char(charfeat, order-1, order, gap, reverse)

	charfeat=StringCharFeatures(fm_test_dna, DNA)
	feats_test=StringWordFeatures(DNA)
	feats_test.obtain_from_char(charfeat, order-1, order, gap, reverse)

	kernel=MatchWordStringKernel(size_cache, degree)
	kernel.set_normalizer(AvgDiagKernelNormalizer(scale))
	kernel.init(feats_train, feats_train)

	km_train=kernel.get_kernel_matrix()
	kernel.init(feats_train, feats_test)
	km_test=kernel.get_kernel_matrix()
	return km_train,km_test,kernel
def kernel_poly_match_word_string_modular (fm_train_dna=traindat,fm_test_dna=testdat,
degree=2,inhomogene=True,order=3,gap=0,reverse=False):
	from modshogun import PolyMatchWordStringKernel
	from modshogun import StringWordFeatures, StringCharFeatures, DNA



	charfeat=StringCharFeatures(fm_train_dna, DNA)
	feats_train=StringWordFeatures(DNA)
	feats_train.obtain_from_char(charfeat, order-1, order, gap, reverse)

	charfeat=StringCharFeatures(fm_test_dna, DNA)
	feats_test=StringWordFeatures(DNA)
	feats_test.obtain_from_char(charfeat, order-1, order, gap, reverse)

	kernel=PolyMatchWordStringKernel(feats_train, feats_train, degree, inhomogene)

	km_train=kernel.get_kernel_matrix()
	kernel.init(feats_train, feats_test)
	km_test=kernel.get_kernel_matrix()
	return km_train,km_test,kernel
def kernel_top_modular (fm_train_dna=traindat,fm_test_dna=testdat,label_train_dna=label_traindat,pseudo=1e-1,
	order=1,gap=0,reverse=False,kargs=[1, False, True]):
	from modshogun import StringCharFeatures, StringWordFeatures, TOPFeatures, DNA
	from modshogun import PolyKernel
	from modshogun import HMM, BW_NORMAL

	N=1 # toy HMM with 1 state
	M=4 # 4 observations -> DNA


	# train HMM for positive class
	charfeat=StringCharFeatures(fm_hmm_pos, DNA)
	hmm_pos_train=StringWordFeatures(charfeat.get_alphabet())
	hmm_pos_train.obtain_from_char(charfeat, order-1, order, gap, reverse)
	pos=HMM(hmm_pos_train, N, M, pseudo)
	pos.baum_welch_viterbi_train(BW_NORMAL)

	# train HMM for negative class
	charfeat=StringCharFeatures(fm_hmm_neg, DNA)
	hmm_neg_train=StringWordFeatures(charfeat.get_alphabet())
	hmm_neg_train.obtain_from_char(charfeat, order-1, order, gap, reverse)
	neg=HMM(hmm_neg_train, N, M, pseudo)
	neg.baum_welch_viterbi_train(BW_NORMAL)

	# Kernel training data
	charfeat=StringCharFeatures(fm_train_dna, DNA)
	wordfeats_train=StringWordFeatures(charfeat.get_alphabet())
	wordfeats_train.obtain_from_char(charfeat, order-1, order, gap, reverse)

	# Kernel testing data
	charfeat=StringCharFeatures(fm_test_dna, DNA)
	wordfeats_test=StringWordFeatures(charfeat.get_alphabet())
	wordfeats_test.obtain_from_char(charfeat, order-1, order, gap, reverse)

	# get kernel on training data
	pos.set_observations(wordfeats_train)
	neg.set_observations(wordfeats_train)
	feats_train=TOPFeatures(10, pos, neg, False, False)
	kernel=PolyKernel(feats_train, feats_train, *kargs)
	km_train=kernel.get_kernel_matrix()

	# get kernel on testing data
	pos_clone=HMM(pos)
	neg_clone=HMM(neg)
	pos_clone.set_observations(wordfeats_test)
	neg_clone.set_observations(wordfeats_test)
	feats_test=TOPFeatures(10, pos_clone, neg_clone, False, False)
	kernel.init(feats_train, feats_test)
	km_test=kernel.get_kernel_matrix()
	return km_train,km_test,kernel
def kernel_weighted_comm_word_string_modular (fm_train_dna=traindat,fm_test_dna=testdat,order=3,gap=0,reverse=True ):
	from modshogun import WeightedCommWordStringKernel
	from modshogun import StringWordFeatures, StringCharFeatures, DNA
	from modshogun import SortWordString

	charfeat=StringCharFeatures(fm_train_dna, DNA)
	feats_train=StringWordFeatures(charfeat.get_alphabet())
	feats_train.obtain_from_char(charfeat, order-1, order, gap, reverse)
	preproc=SortWordString()
	preproc.init(feats_train)
	feats_train.add_preprocessor(preproc)
	feats_train.apply_preprocessor()

	charfeat=StringCharFeatures(fm_test_dna, DNA)
	feats_test=StringWordFeatures(charfeat.get_alphabet())
	feats_test.obtain_from_char(charfeat, order-1, order, gap, reverse)
	feats_test.add_preprocessor(preproc)
	feats_test.apply_preprocessor()

	use_sign=False
	kernel=WeightedCommWordStringKernel(feats_train, feats_train, use_sign)
	km_train=kernel.get_kernel_matrix()

	kernel.init(feats_train, feats_test)
	km_test=kernel.get_kernel_matrix()
	return km_train,km_test,kernel
def tests_check_commwordkernel_memleak_modular(num, order, gap, reverse):
    import gc
    from modshogun import Alphabet, StringCharFeatures, StringWordFeatures, DNA
    from modshogun import SortWordString, MSG_DEBUG
    from modshogun import CommWordStringKernel, IdentityKernelNormalizer
    from numpy import mat

    POS = [
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'TTGT', num * 'TTGT', num * 'TTGT', num * 'TTGT', num * 'TTGT',
        num * 'TTGT', num * 'TTGT', num * 'TTGT', num * 'TTGT', num * 'TTGT',
        num * 'TTGT', num * 'TTGT', num * 'TTGT', num * 'TTGT', num * 'TTGT',
        num * 'TTGT', num * 'TTGT', num * 'TTGT', num * 'TTGT', num * 'TTGT',
        num * 'TTGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT'
    ]
    NEG = [
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'TTGT', num * 'TTGT', num * 'TTGT', num * 'TTGT', num * 'TTGT',
        num * 'TTGT', num * 'TTGT', num * 'TTGT', num * 'TTGT', num * 'TTGT',
        num * 'TTGT', num * 'TTGT', num * 'TTGT', num * 'TTGT', num * 'TTGT',
        num * 'TTGT', num * 'TTGT', num * 'TTGT', num * 'TTGT', num * 'TTGT',
        num * 'TTGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT', num * 'ACGT',
        num * 'ACGT'
    ]

    for i in range(10):
        alpha = Alphabet(DNA)
        traindat = StringCharFeatures(alpha)
        traindat.set_features(POS + NEG)
        trainudat = StringWordFeatures(traindat.get_alphabet())
        trainudat.obtain_from_char(traindat, order - 1, order, gap, reverse)
        #trainudat.io.set_loglevel(MSG_DEBUG)
        pre = SortWordString()
        #pre.io.set_loglevel(MSG_DEBUG)
        pre.init(trainudat)
        trainudat.add_preprocessor(pre)
        trainudat.apply_preprocessor()
        spec = CommWordStringKernel(10, False)
        spec.set_normalizer(IdentityKernelNormalizer())
        spec.init(trainudat, trainudat)
        K = spec.get_kernel_matrix()

    del POS
    del NEG
    del order
    del gap
    del reverse
    return K
Exemple #20
0
def kernel_fisher_modular(fm_train_dna=traindat,
                          fm_test_dna=testdat,
                          label_train_dna=label_traindat,
                          N=1,
                          M=4,
                          pseudo=1e-1,
                          order=1,
                          gap=0,
                          reverse=False,
                          kargs=[1, False, True]):

    from modshogun import StringCharFeatures, StringWordFeatures, FKFeatures, DNA
    from modshogun import PolyKernel
    from modshogun import HMM, BW_NORMAL  #, MSG_DEBUG

    # train HMM for positive class
    charfeat = StringCharFeatures(fm_hmm_pos, DNA)
    #charfeat.io.set_loglevel(MSG_DEBUG)
    hmm_pos_train = StringWordFeatures(charfeat.get_alphabet())
    hmm_pos_train.obtain_from_char(charfeat, order - 1, order, gap, reverse)
    pos = HMM(hmm_pos_train, N, M, pseudo)
    pos.baum_welch_viterbi_train(BW_NORMAL)

    # train HMM for negative class
    charfeat = StringCharFeatures(fm_hmm_neg, DNA)
    hmm_neg_train = StringWordFeatures(charfeat.get_alphabet())
    hmm_neg_train.obtain_from_char(charfeat, order - 1, order, gap, reverse)
    neg = HMM(hmm_neg_train, N, M, pseudo)
    neg.baum_welch_viterbi_train(BW_NORMAL)

    # Kernel training data
    charfeat = StringCharFeatures(fm_train_dna, DNA)
    wordfeats_train = StringWordFeatures(charfeat.get_alphabet())
    wordfeats_train.obtain_from_char(charfeat, order - 1, order, gap, reverse)

    # Kernel testing data
    charfeat = StringCharFeatures(fm_test_dna, DNA)
    wordfeats_test = StringWordFeatures(charfeat.get_alphabet())
    wordfeats_test.obtain_from_char(charfeat, order - 1, order, gap, reverse)

    # get kernel on training data
    pos.set_observations(wordfeats_train)
    neg.set_observations(wordfeats_train)
    feats_train = FKFeatures(10, pos, neg)
    feats_train.set_opt_a(-1)  #estimate prior
    kernel = PolyKernel(feats_train, feats_train, *kargs)
    km_train = kernel.get_kernel_matrix()

    # get kernel on testing data
    pos_clone = HMM(pos)
    neg_clone = HMM(neg)
    pos_clone.set_observations(wordfeats_test)
    neg_clone.set_observations(wordfeats_test)
    feats_test = FKFeatures(10, pos_clone, neg_clone)
    feats_test.set_a(feats_train.get_a())  #use prior from training data
    kernel.init(feats_train, feats_test)
    km_test = kernel.get_kernel_matrix()
    return km_train, km_test, kernel
Exemple #21
0
def runShogunSVMDNACombinedSpectrumKernel(train_xt, train_lt, test_xt):
	"""
	run svm with combined spectrum kernel
	"""

    ##################################################
    # set up svm
	kernel=CombinedKernel()
	feats_train=CombinedFeatures()
	feats_test=CombinedFeatures()
	
	for K in KList:
		# Iterate through the K's and make a spectrum kernel for each
		charfeat_train = StringCharFeatures(train_xt, DNA)
		current_feats_train = StringWordFeatures(DNA)
		current_feats_train.obtain_from_char(charfeat_train, K-1, K, GAP, False)
		preproc=SortWordString()
		preproc.init(current_feats_train)
		current_feats_train.add_preprocessor(preproc)
		current_feats_train.apply_preprocessor()
		feats_train.append_feature_obj(current_feats_train)
	
		charfeat_test = StringCharFeatures(test_xt, DNA)
		current_feats_test=StringWordFeatures(DNA)
		current_feats_test.obtain_from_char(charfeat_test, K-1, K, GAP, False)
		current_feats_test.add_preprocessor(preproc)
		current_feats_test.apply_preprocessor()
		feats_test.append_feature_obj(current_feats_test)
	
		current_kernel=CommWordStringKernel(10, False)
		kernel.append_kernel(current_kernel)
	
	kernel.io.set_loglevel(MSG_DEBUG)

    # init kernel
	labels = BinaryLabels(train_lt)
	
	# run svm model
	print "Ready to train!"
	kernel.init(feats_train, feats_train)
	svm=LibSVM(SVMC, kernel, labels)
	svm.io.set_loglevel(MSG_DEBUG)
	svm.train()

	# predictions
	print "Making predictions!"
	out1DecisionValues = svm.apply(feats_train)
	out1=out1DecisionValues.get_labels()
	kernel.init(feats_train, feats_test)
	out2DecisionValues = svm.apply(feats_test)
	out2=out2DecisionValues.get_labels()

	return out1,out2,out1DecisionValues,out2DecisionValues
def distance_manhattenword_modular (train_fname=traindna,test_fname=testdna,order=3,gap=0,reverse=False):
	from modshogun import StringCharFeatures, StringWordFeatures, DNA
	from modshogun import SortWordString, ManhattanWordDistance, CSVFile

	charfeat=StringCharFeatures(CSVFile(train_fname), DNA)
	feats_train=StringWordFeatures(charfeat.get_alphabet())
	feats_train.obtain_from_char(charfeat, order-1, order, gap, reverse)
	preproc=SortWordString()
	preproc.init(feats_train)
	feats_train.add_preprocessor(preproc)
	feats_train.apply_preprocessor()

	charfeat=StringCharFeatures(CSVFile(test_fname), DNA)
	feats_test=StringWordFeatures(charfeat.get_alphabet())
	feats_test.obtain_from_char(charfeat, order-1, order, gap, reverse)
	feats_test.add_preprocessor(preproc)
	feats_test.apply_preprocessor()

	distance=ManhattanWordDistance(feats_train, feats_train)

	dm_train=distance.get_distance_matrix()
	distance.init(feats_train, feats_test)
	dm_test=distance.get_distance_matrix()
	return dm_train,dm_test
Exemple #23
0
def runShogunSVRSpectrumKernel(train_xt, train_lt, test_xt, svm_c=1):
    """
	serialize svr with spectrum kernels
	"""

    ##################################################
    # set up svr
    charfeat_train = StringCharFeatures(train_xt, DNA)
    feats_train = StringWordFeatures(DNA)
    feats_train.obtain_from_char(charfeat_train, K - 1, K, GAP, False)
    preproc = SortWordString()
    preproc.init(feats_train)
    feats_train.add_preprocessor(preproc)
    feats_train.apply_preprocessor()

    charfeat_test = StringCharFeatures(test_xt, DNA)
    feats_test = StringWordFeatures(DNA)
    feats_test.obtain_from_char(charfeat_test, K - 1, K, GAP, False)
    feats_test.add_preprocessor(preproc)
    feats_test.apply_preprocessor()

    kernel = CommWordStringKernel(feats_train, feats_train, False)
    kernel.io.set_loglevel(MSG_DEBUG)

    # init kernel
    labels = RegressionLabels(train_lt)

    # two svr models: epsilon and nu
    print "Ready to train!"
    svr_epsilon = LibSVR(svm_c, SVRPARAM, kernel, labels, LIBSVR_EPSILON_SVR)
    svr_epsilon.io.set_loglevel(MSG_DEBUG)
    svr_epsilon.train()

    # predictions
    print "Making predictions!"
    out1_epsilon = svr_epsilon.apply(feats_train).get_labels()
    kernel.init(feats_train, feats_test)
    out2_epsilon = svr_epsilon.apply(feats_test).get_labels()

    return out1_epsilon, out2_epsilon, kernel
def runShogunSVMMultipleKernels(train_xt, train_lt, test_xt):
    """
	Run SVM with Multiple Kernels
	"""

    ##################################################

    # Take all examples
    idxs = np.random.randint(1, 14000, 14000)
    train_xt = np.array(train_xt)[idxs]
    train_lt = np.array(train_lt)[idxs]

    # Initialize kernel and features
    kernel = CombinedKernel()
    feats_train = CombinedFeatures()
    feats_test = CombinedFeatures()
    labels = BinaryLabels(train_lt)

    ##################### Multiple Spectrum Kernels #########################
    for i in range(K1, K2, -1):
        # append training data to combined feature object
        charfeat_train = StringCharFeatures(list(train_xt), DNA)
        feats_train_k1 = StringWordFeatures(DNA)
        feats_train_k1.obtain_from_char(charfeat_train, i - 1, i, GAP, False)
        preproc = SortWordString()
        preproc.init(feats_train_k1)
        feats_train_k1.add_preprocessor(preproc)
        feats_train_k1.apply_preprocessor()
        # append testing data to combined feature object
        charfeat_test = StringCharFeatures(test_xt, DNA)
        feats_test_k1 = StringWordFeatures(DNA)
        feats_test_k1.obtain_from_char(charfeat_test, i - 1, i, GAP, False)
        feats_test_k1.add_preprocessor(preproc)
        feats_test_k1.apply_preprocessor()
        # append features
        feats_train.append_feature_obj(charfeat_train)
        feats_test.append_feature_obj(charfeat_test)
        # append spectrum kernel
        kernel1 = CommWordStringKernel(10, i)
        kernel1.io.set_loglevel(MSG_DEBUG)
        kernel.append_kernel(kernel1)
    '''
	Uncomment this for Multiple Weighted degree kernels and comment
	the multiple spectrum kernel block above instead

	##################### Multiple Weighted Degree Kernel #########################
	for i in range(K1,K2,-1):
		# append training data to combined feature object
		charfeat_train = StringCharFeatures(list(train_xt), DNA)
		# append testing data to combined feature object
		charfeat_test = StringCharFeatures(test_xt, DNA)
		# append features
		feats_train.append_feature_obj(charfeat_train);
    		feats_test.append_feature_obj(charfeat_test);
		# setup weighted degree kernel		
		kernel1=WeightedDegreePositionStringKernel(10,i);
    		kernel1.io.set_loglevel(MSG_DEBUG);
		kernel1.set_shifts(SHIFT*np.ones(len(train_xt[0]), dtype=np.int32))
		kernel1.set_position_weights(np.ones(len(train_xt[0]), dtype=np.float64));
		kernel.append_kernel(kernel1);
	'''

    ##################### Training #########################

    print "Starting MKL training.."
    mkl = MKLClassification()
    mkl.set_mkl_norm(3)  #1,2,3
    mkl.set_C(SVMC, SVMC)
    mkl.set_kernel(kernel)
    mkl.set_labels(labels)
    mkl.train(feats_train)

    print "Making predictions!"
    out1 = mkl.apply(feats_train).get_labels()
    out2 = mkl.apply(feats_test).get_labels()

    return out1, out2, train_lt
def get_feature_mat(fm_train_dna, fm_test_dna, N, M,
		pseudo=1e-1,order=1,gap=0,reverse=False):

	# train HMM for positive class
	print "hmm training"
	charfeat=StringCharFeatures(fm_train_dna, DNA)
	#charfeat.io.set_loglevel(MSG_DEBUG)
	hmm_train=StringWordFeatures(charfeat.get_alphabet())
	hmm_train.obtain_from_char(charfeat, order-1, order, gap, reverse)
	pos=HMM(hmm_train, N, M, pseudo)
	pos.baum_welch_viterbi_train(BW_NORMAL)
	neg = HMM(pos)

	print "Kernel training data"
	charfeat=StringCharFeatures(fm_train_dna, DNA)
	wordfeats_train=StringWordFeatures(charfeat.get_alphabet())
	wordfeats_train.obtain_from_char(charfeat, order-1, order, gap, reverse)

	print "Kernel testing data"
	charfeat=StringCharFeatures(fm_test_dna, DNA)
	wordfeats_test=StringWordFeatures(charfeat.get_alphabet())
	wordfeats_test.obtain_from_char(charfeat, order-1, order, gap, reverse)

	print "get kernel on training data"
	pos.set_observations(wordfeats_train)
	neg.set_observations(wordfeats_train)
	feats_train=FKFeatures(10, pos, neg)
	feats_train.set_opt_a(-1) #estimate prior

	print 'getting feature train'
	train_featmat = []
	for i in range(len(fm_train_dna)):
		train_featmat.append(feats_train.get_computed_dot_feature_vector(i))
	train_featmat = np.array(train_featmat)

	print "get feature on testing"
	pos_clone=HMM(pos)
	neg_clone=HMM(neg)
	pos_clone.set_observations(wordfeats_test)
	neg_clone.set_observations(wordfeats_test)
	feats_test=FKFeatures(10, pos_clone, neg_clone)
	feats_test.set_a(feats_train.get_a()) #use prior from training data

	test_featmat = []
	for i in range(len(fm_test_dna)):
		test_featmat.append(feats_test.get_feature_vector(i))
	test_featmat = np.array(test_featmat)
	return train_featmat, test_featmat
def runShogunSVMDNAWeightedCommonWordKernel(train_xt, train_lt, test_xt):
	"""
	run svm with spectrum kernel
	"""

    ##################################################
    # set up svm
	charfeat_train = StringCharFeatures(train_xt, DNA)
	feats_train = StringWordFeatures(DNA)
	feats_train.obtain_from_char(charfeat_train, K-1, K, GAP, False)
	preproc=SortWordString()
	preproc.init(feats_train)
	feats_train.add_preprocessor(preproc)
	feats_train.apply_preprocessor()
	
	charfeat_test = StringCharFeatures(test_xt, DNA)
	feats_test=StringWordFeatures(DNA)
	feats_test.obtain_from_char(charfeat_test, K-1, K, GAP, False)
	feats_test.add_preprocessor(preproc)
	feats_test.apply_preprocessor()
	
	kernel=WeightedCommWordStringKernel(feats_train, feats_train, False)
	kernel.io.set_loglevel(MSG_DEBUG)

    # init kernel
	labels = BinaryLabels(train_lt)
	
	# run svm model
	print "Ready to train!"
	svm=LibSVM(SVMC, kernel, labels)
	svm.io.set_loglevel(MSG_DEBUG)
	svm.train()

	# predictions
	print "Making predictions!"
	out1=svm.apply(feats_train).get_labels()
	kernel.init(feats_train, feats_test)
	out2=svm.apply(feats_test).get_labels()

	return out1,out2
def runShogunOneClassSVMDNASpectrumKernel(train_xt, train_lt, test_xt):
	"""
	run svm with spectrum kernel
	"""

    ##################################################
    # set up svr
	charfeat_train = StringCharFeatures(train_xt, DNA)
	feats_train = StringWordFeatures(DNA)
	feats_train.obtain_from_char(charfeat_train, K-1, K, GAP, False)
	preproc=SortWordString()
	preproc.init(feats_train)
	feats_train.add_preprocessor(preproc)
	feats_train.apply_preprocessor()
	
	charfeat_test = StringCharFeatures(test_xt, DNA)
	feats_test=StringWordFeatures(DNA)
	feats_test.obtain_from_char(charfeat_test, K-1, K, GAP, False)
	feats_test.add_preprocessor(preproc)
	feats_test.apply_preprocessor()
	
	kernel=CommWordStringKernel(feats_train, feats_train, False)
	kernel.io.set_loglevel(MSG_DEBUG)

    # init kernel
	labels = BinaryLabels(train_lt)
	
	# run svm model
	print "Ready to train!"
	svm=LibSVMOneClass(SVMC, kernel)
	svm.set_epsilon(EPSILON)
	svm.train()


	# predictions
	print "Making predictions!"
	out1DecisionValues = svm.apply(feats_train)
	out1=out1DecisionValues.get_labels()
	kernel.init(feats_train, feats_test)
	out2DecisionValues = svm.apply(feats_test)
	out2=out2DecisionValues.get_labels()


#	predictions = svm.apply(feats_test)
#	return predictions, svm, predictions.get_labels()

	return out1,out2,out1DecisionValues,out2DecisionValues
def runShogunSVMProteinPolyMatchSpectrumKernel(train_xt, train_lt, test_xt):
	"""
	run svm with spectrum kernel
	"""

    ##################################################
    # set up svm
	charfeat_train = StringCharFeatures(train_xt, PROTEIN)
	feats_train = StringWordFeatures(PROTEIN)
	feats_train.obtain_from_char(charfeat_train, K-1, K, GAP, False)
	preproc=SortWordString()
	preproc.init(feats_train)
	feats_train.add_preprocessor(preproc)
	feats_train.apply_preprocessor()
	
	charfeat_test = StringCharFeatures(test_xt, PROTEIN)
	feats_test=StringWordFeatures(PROTEIN)
	feats_test.obtain_from_char(charfeat_test, K-1, K, GAP, False)
	feats_test.add_preprocessor(preproc)
	feats_test.apply_preprocessor()
	
	kernel=PolyMatchWordStringKernel(feats_train, feats_train, 2, True)
	kernel.io.set_loglevel(MSG_DEBUG)

    # init kernel
	labels = BinaryLabels(train_lt)
	
	# run svm model
	print "Ready to train!"
	svm=LibSVM(SVMC, kernel, labels)
	svm.io.set_loglevel(MSG_DEBUG)
	svm.train()

	# predictions
	print "Making predictions!"
	out1DecisionValues = svm.apply(feats_train)
	out1=out1DecisionValues.get_labels()
	kernel.init(feats_train, feats_test)
	out2DecisionValues = svm.apply(feats_test)
	out2=out2DecisionValues.get_labels()

	return out1,out2,out1DecisionValues,out2DecisionValues
def tests_check_commwordkernel_memleak_modular (num, order, gap, reverse):
	import gc
	from modshogun import Alphabet,StringCharFeatures,StringWordFeatures,DNA
	from modshogun import SortWordString, MSG_DEBUG
	from modshogun import CommWordStringKernel, IdentityKernelNormalizer
	from numpy import mat

	POS=[num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
	num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
	num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
	num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
	num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
	num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
	num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
	num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
	num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
	num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
	num*'ACGT',num*'TTGT', num*'TTGT', num*'TTGT',num*'TTGT', num*'TTGT',
	num*'TTGT',num*'TTGT', num*'TTGT', num*'TTGT',num*'TTGT', num*'TTGT',
	num*'TTGT',num*'TTGT', num*'TTGT', num*'TTGT',num*'TTGT', num*'TTGT',
	num*'TTGT',num*'TTGT', num*'TTGT', num*'TTGT',num*'ACGT', num*'ACGT',
	num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
	num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
	num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
	num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
	num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
	num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
	num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
	num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
	num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
	num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT']
	NEG=[num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
	num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
	num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
	num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
	num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
	num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
	num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
	num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
	num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
	num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
	num*'ACGT',num*'TTGT', num*'TTGT', num*'TTGT',num*'TTGT', num*'TTGT',
	num*'TTGT',num*'TTGT', num*'TTGT', num*'TTGT',num*'TTGT', num*'TTGT',
	num*'TTGT',num*'TTGT', num*'TTGT', num*'TTGT',num*'TTGT', num*'TTGT',
	num*'TTGT',num*'TTGT', num*'TTGT', num*'TTGT',num*'ACGT', num*'ACGT',
	num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
	num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
	num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
	num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
	num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
	num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
	num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
	num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
	num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
	num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT']

	for i in range(10):
		alpha=Alphabet(DNA)
		traindat=StringCharFeatures(alpha)
		traindat.set_features(POS+NEG)
		trainudat=StringWordFeatures(traindat.get_alphabet());
		trainudat.obtain_from_char(traindat, order-1, order, gap, reverse)
		#trainudat.io.set_loglevel(MSG_DEBUG)
		pre = SortWordString()
		#pre.io.set_loglevel(MSG_DEBUG)
		pre.init(trainudat)
		trainudat.add_preprocessor(pre)
		trainudat.apply_preprocessor()
		spec = CommWordStringKernel(10, False)
		spec.set_normalizer(IdentityKernelNormalizer())
		spec.init(trainudat, trainudat)
		K=spec.get_kernel_matrix()

	del POS
	del NEG
	del order
	del gap
	del reverse
	return K
def kernel_fisher_modular (fm_train_dna=traindat, fm_test_dna=testdat,
		label_train_dna=label_traindat,
		N=1,M=4,pseudo=1e-1,order=1,gap=0,reverse=False,
		kargs=[1,False,True]):

	from modshogun import StringCharFeatures, StringWordFeatures, FKFeatures, DNA
	from modshogun import PolyKernel
	from modshogun import HMM, BW_NORMAL#, MSG_DEBUG

	# train HMM for positive class
	charfeat=StringCharFeatures(fm_hmm_pos, DNA)
	#charfeat.io.set_loglevel(MSG_DEBUG)
	hmm_pos_train=StringWordFeatures(charfeat.get_alphabet())
	hmm_pos_train.obtain_from_char(charfeat, order-1, order, gap, reverse)
	pos=HMM(hmm_pos_train, N, M, pseudo)
	pos.baum_welch_viterbi_train(BW_NORMAL)

	# train HMM for negative class
	charfeat=StringCharFeatures(fm_hmm_neg, DNA)
	hmm_neg_train=StringWordFeatures(charfeat.get_alphabet())
	hmm_neg_train.obtain_from_char(charfeat, order-1, order, gap, reverse)
	neg=HMM(hmm_neg_train, N, M, pseudo)
	neg.baum_welch_viterbi_train(BW_NORMAL)

	# Kernel training data
	charfeat=StringCharFeatures(fm_train_dna, DNA)
	wordfeats_train=StringWordFeatures(charfeat.get_alphabet())
	wordfeats_train.obtain_from_char(charfeat, order-1, order, gap, reverse)

	# Kernel testing data
	charfeat=StringCharFeatures(fm_test_dna, DNA)
	wordfeats_test=StringWordFeatures(charfeat.get_alphabet())
	wordfeats_test.obtain_from_char(charfeat, order-1, order, gap, reverse)

	# get kernel on training data
	pos.set_observations(wordfeats_train)
	neg.set_observations(wordfeats_train)
	feats_train=FKFeatures(10, pos, neg)
	feats_train.set_opt_a(-1) #estimate prior
	kernel=PolyKernel(feats_train, feats_train, *kargs)
	km_train=kernel.get_kernel_matrix()

	# get kernel on testing data
	pos_clone=HMM(pos)
	neg_clone=HMM(neg)
	pos_clone.set_observations(wordfeats_test)
	neg_clone.set_observations(wordfeats_test)
	feats_test=FKFeatures(10, pos_clone, neg_clone)
	feats_test.set_a(feats_train.get_a()) #use prior from training data
	kernel.init(feats_train, feats_test)
	km_test=kernel.get_kernel_matrix()
	return km_train,km_test,kernel
def runShogunSVMMultipleKernels(train_xt, train_lt, test_xt):
	"""
	Run SVM with Multiple Kernels
	"""

    ##################################################

    	# Take all examples
   	idxs = np.random.randint(1,14000,14000);
	train_xt = np.array(train_xt)[idxs];
    	train_lt = np.array(train_lt)[idxs];

    	# Initialize kernel and features
    	kernel=CombinedKernel()
	feats_train=CombinedFeatures()
	feats_test=CombinedFeatures()
	labels = BinaryLabels(train_lt)
	
	##################### Multiple Spectrum Kernels #########################
	for i in range(K1,K2,-1):
                # append training data to combined feature object
                charfeat_train = StringCharFeatures(list(train_xt), DNA)
                feats_train_k1 = StringWordFeatures(DNA)
                feats_train_k1.obtain_from_char(charfeat_train, i-1, i, GAP, False)
                preproc=SortWordString()
                preproc.init(feats_train_k1)
                feats_train_k1.add_preprocessor(preproc)
                feats_train_k1.apply_preprocessor()
                # append testing data to combined feature object
                charfeat_test = StringCharFeatures(test_xt, DNA)
                feats_test_k1=StringWordFeatures(DNA)
                feats_test_k1.obtain_from_char(charfeat_test, i-1, i, GAP, False)
                feats_test_k1.add_preprocessor(preproc)
                feats_test_k1.apply_preprocessor()
                # append features
                feats_train.append_feature_obj(charfeat_train);
                feats_test.append_feature_obj(charfeat_test);
		# append spectrum kernel
                kernel1=CommWordStringKernel(10,i);
                kernel1.io.set_loglevel(MSG_DEBUG);
                kernel.append_kernel(kernel1);

	'''
	Uncomment this for Multiple Weighted degree kernels and comment
	the multiple spectrum kernel block above instead

	##################### Multiple Weighted Degree Kernel #########################
	for i in range(K1,K2,-1):
		# append training data to combined feature object
		charfeat_train = StringCharFeatures(list(train_xt), DNA)
		# append testing data to combined feature object
		charfeat_test = StringCharFeatures(test_xt, DNA)
		# append features
		feats_train.append_feature_obj(charfeat_train);
    		feats_test.append_feature_obj(charfeat_test);
		# setup weighted degree kernel		
		kernel1=WeightedDegreePositionStringKernel(10,i);
    		kernel1.io.set_loglevel(MSG_DEBUG);
		kernel1.set_shifts(SHIFT*np.ones(len(train_xt[0]), dtype=np.int32))
		kernel1.set_position_weights(np.ones(len(train_xt[0]), dtype=np.float64));
		kernel.append_kernel(kernel1);
	'''

	##################### Training #########################

	print "Starting MKL training.."
	mkl = MKLClassification();
	mkl.set_mkl_norm(3) #1,2,3
	mkl.set_C(SVMC, SVMC)
	mkl.set_kernel(kernel)
	mkl.set_labels(labels)
	mkl.train(feats_train)
	
	print "Making predictions!"
	out1 = mkl.apply(feats_train).get_labels();
	out2 = mkl.apply(feats_test).get_labels();

	return out1,out2,train_lt
Exemple #32
0
def runShogunSVMDNASpectrumKernel(train_xt, train_lt, test_xt):
    """
	run svm with spectrum kernel
	"""

    ##################################################
    # set up svr
    charfeat_train = StringCharFeatures(train_xt, DNA)
    feats_train = StringWordFeatures(DNA)
    feats_train.obtain_from_char(charfeat_train, K - 1, K, GAP, False)
    preproc = SortWordString()
    preproc.init(feats_train)
    feats_train.add_preprocessor(preproc)
    feats_train.apply_preprocessor()

    charfeat_test = StringCharFeatures(test_xt, DNA)
    feats_test = StringWordFeatures(DNA)
    feats_test.obtain_from_char(charfeat_test, K - 1, K, GAP, False)
    feats_test.add_preprocessor(preproc)
    feats_test.apply_preprocessor()

    kernel = CommWordStringKernel(feats_train, feats_train, False)
    kernel.io.set_loglevel(MSG_DEBUG)

    # init kernel
    labels = BinaryLabels(train_lt)

    # run svm model
    print "Ready to train!"
    svm = LibSVM(SVMC, kernel, labels)
    svm.io.set_loglevel(MSG_DEBUG)
    svm.train()

    # predictions
    print "Making predictions!"
    out1DecisionValues = svm.apply(feats_train)
    out1 = out1DecisionValues.get_labels()
    kernel.init(feats_train, feats_test)
    out2DecisionValues = svm.apply(feats_test)
    out2 = out2DecisionValues.get_labels()

    return out1, out2, out1DecisionValues, out2DecisionValues
def distance_manhattenword_modular(train_fname=traindna,
                                   test_fname=testdna,
                                   order=3,
                                   gap=0,
                                   reverse=False):
    from modshogun import StringCharFeatures, StringWordFeatures, DNA
    from modshogun import SortWordString, ManhattanWordDistance, CSVFile

    charfeat = StringCharFeatures(CSVFile(train_fname), DNA)
    feats_train = StringWordFeatures(charfeat.get_alphabet())
    feats_train.obtain_from_char(charfeat, order - 1, order, gap, reverse)
    preproc = SortWordString()
    preproc.init(feats_train)
    feats_train.add_preprocessor(preproc)
    feats_train.apply_preprocessor()

    charfeat = StringCharFeatures(CSVFile(test_fname), DNA)
    feats_test = StringWordFeatures(charfeat.get_alphabet())
    feats_test.obtain_from_char(charfeat, order - 1, order, gap, reverse)
    feats_test.add_preprocessor(preproc)
    feats_test.apply_preprocessor()

    distance = ManhattanWordDistance(feats_train, feats_train)

    dm_train = distance.get_distance_matrix()
    distance.init(feats_train, feats_test)
    dm_test = distance.get_distance_matrix()
    return dm_train, dm_test
def distance_canberraword_modular (fm_train_dna=traindna,fm_test_dna=testdna,order=3,gap=0,reverse=False):
	from modshogun import StringCharFeatures, StringWordFeatures, DNA
	from modshogun import SortWordString
	from modshogun import CanberraWordDistance

	charfeat=StringCharFeatures(DNA)
	charfeat.set_features(fm_train_dna)
	feats_train=StringWordFeatures(charfeat.get_alphabet())
	feats_train.obtain_from_char(charfeat, order-1, order, gap, reverse)
	preproc=SortWordString()
	preproc.init(feats_train)
	feats_train.add_preprocessor(preproc)
	feats_train.apply_preprocessor()

	charfeat=StringCharFeatures(DNA)
	charfeat.set_features(fm_test_dna)
	feats_test=StringWordFeatures(charfeat.get_alphabet())
	feats_test.obtain_from_char(charfeat, order-1, order, gap, reverse)
	feats_test.add_preprocessor(preproc)
	feats_test.apply_preprocessor()

	distance=CanberraWordDistance(feats_train, feats_train)

	dm_train=distance.get_distance_matrix()
	distance.init(feats_train, feats_test)
	dm_test=distance.get_distance_matrix()
	return distance,dm_train,dm_test
def distance_hammingword_modular (fm_train_dna=traindna,fm_test_dna=testdna,
		fm_test_real=testdat,order=3,gap=0,reverse=False,use_sign=False):

	from modshogun import StringCharFeatures, StringWordFeatures, DNA
	from modshogun import SortWordString
	from modshogun import HammingWordDistance

	charfeat=StringCharFeatures(DNA)
	charfeat.set_features(fm_train_dna)
	feats_train=StringWordFeatures(charfeat.get_alphabet())
	feats_train.obtain_from_char(charfeat, order-1, order, gap, reverse)
	preproc=SortWordString()
	preproc.init(feats_train)
	feats_train.add_preprocessor(preproc)
	feats_train.apply_preprocessor()

	charfeat=StringCharFeatures(DNA)
	charfeat.set_features(fm_test_dna)
	feats_test=StringWordFeatures(charfeat.get_alphabet())
	feats_test.obtain_from_char(charfeat, order-1, order, gap, reverse)
	feats_test.add_preprocessor(preproc)
	feats_test.apply_preprocessor()

	distance=HammingWordDistance(feats_train, feats_train, use_sign)

	dm_train=distance.get_distance_matrix()
	distance.init(feats_train, feats_test)
	dm_test=distance.get_distance_matrix()
	return distance,dm_train,dm_test
def runShogunSVRSpectrumKernel(train_xt, train_lt, test_xt, svm_c=1):
	"""
	serialize svr with spectrum kernels
	"""

    ##################################################
    # set up svr
	charfeat_train = StringCharFeatures(train_xt, DNA)
	feats_train = StringWordFeatures(DNA)
	feats_train.obtain_from_char(charfeat_train, K-1, K, GAP, False)
	preproc=SortWordString()
	preproc.init(feats_train)
	feats_train.add_preprocessor(preproc)
	feats_train.apply_preprocessor()
	
	charfeat_test = StringCharFeatures(test_xt, DNA)
	feats_test=StringWordFeatures(DNA)
	feats_test.obtain_from_char(charfeat_test, K-1, K, GAP, False)
	feats_test.add_preprocessor(preproc)
	feats_test.apply_preprocessor()
	
	kernel=CommWordStringKernel(feats_train, feats_train, False)
	kernel.io.set_loglevel(MSG_DEBUG)

    # init kernel
	labels = RegressionLabels(train_lt)
	
	# two svr models: epsilon and nu
	print "Ready to train!"
	svr_epsilon=LibSVR(svm_c, SVRPARAM, kernel, labels, LIBSVR_EPSILON_SVR)
	svr_epsilon.io.set_loglevel(MSG_DEBUG)
	svr_epsilon.train()

	# predictions
	print "Making predictions!"
	out1_epsilon=svr_epsilon.apply(feats_train).get_labels()
	kernel.init(feats_train, feats_test)
	out2_epsilon=svr_epsilon.apply(feats_test).get_labels()

	return out1_epsilon,out2_epsilon,kernel
Exemple #37
0
def kernel_top_modular(fm_train_dna=traindat,
                       fm_test_dna=testdat,
                       label_train_dna=label_traindat,
                       pseudo=1e-1,
                       order=1,
                       gap=0,
                       reverse=False,
                       kargs=[1, False, True]):
    from modshogun import StringCharFeatures, StringWordFeatures, TOPFeatures, DNA
    from modshogun import PolyKernel
    from modshogun import HMM, BW_NORMAL

    N = 1  # toy HMM with 1 state
    M = 4  # 4 observations -> DNA

    # train HMM for positive class
    charfeat = StringCharFeatures(fm_hmm_pos, DNA)
    hmm_pos_train = StringWordFeatures(charfeat.get_alphabet())
    hmm_pos_train.obtain_from_char(charfeat, order - 1, order, gap, reverse)
    pos = HMM(hmm_pos_train, N, M, pseudo)
    pos.baum_welch_viterbi_train(BW_NORMAL)

    # train HMM for negative class
    charfeat = StringCharFeatures(fm_hmm_neg, DNA)
    hmm_neg_train = StringWordFeatures(charfeat.get_alphabet())
    hmm_neg_train.obtain_from_char(charfeat, order - 1, order, gap, reverse)
    neg = HMM(hmm_neg_train, N, M, pseudo)
    neg.baum_welch_viterbi_train(BW_NORMAL)

    # Kernel training data
    charfeat = StringCharFeatures(fm_train_dna, DNA)
    wordfeats_train = StringWordFeatures(charfeat.get_alphabet())
    wordfeats_train.obtain_from_char(charfeat, order - 1, order, gap, reverse)

    # Kernel testing data
    charfeat = StringCharFeatures(fm_test_dna, DNA)
    wordfeats_test = StringWordFeatures(charfeat.get_alphabet())
    wordfeats_test.obtain_from_char(charfeat, order - 1, order, gap, reverse)

    # get kernel on training data
    pos.set_observations(wordfeats_train)
    neg.set_observations(wordfeats_train)
    feats_train = TOPFeatures(10, pos, neg, False, False)
    kernel = PolyKernel(feats_train, feats_train, *kargs)
    km_train = kernel.get_kernel_matrix()

    # get kernel on testing data
    pos_clone = HMM(pos)
    neg_clone = HMM(neg)
    pos_clone.set_observations(wordfeats_test)
    neg_clone.set_observations(wordfeats_test)
    feats_test = TOPFeatures(10, pos_clone, neg_clone, False, False)
    kernel.init(feats_train, feats_test)
    km_test = kernel.get_kernel_matrix()
    return km_train, km_test, kernel
Exemple #38
0
def preprocessor_sortwordstring_modular(fm_train_dna=traindna,
                                        fm_test_dna=testdna,
                                        order=3,
                                        gap=0,
                                        reverse=False,
                                        use_sign=False):

    from modshogun import CommWordStringKernel
    from modshogun import StringCharFeatures, StringWordFeatures, DNA
    from modshogun import SortWordString

    charfeat = StringCharFeatures(fm_train_dna, DNA)
    feats_train = StringWordFeatures(charfeat.get_alphabet())
    feats_train.obtain_from_char(charfeat, order - 1, order, gap, reverse)
    preproc = SortWordString()
    preproc.init(feats_train)
    feats_train.add_preprocessor(preproc)
    feats_train.apply_preprocessor()

    charfeat = StringCharFeatures(fm_test_dna, DNA)
    feats_test = StringWordFeatures(charfeat.get_alphabet())
    feats_test.obtain_from_char(charfeat, order - 1, order, gap, reverse)
    feats_test.add_preprocessor(preproc)
    feats_test.apply_preprocessor()

    kernel = CommWordStringKernel(feats_train, feats_train, use_sign)

    km_train = kernel.get_kernel_matrix()
    kernel.init(feats_train, feats_test)
    km_test = kernel.get_kernel_matrix()

    return km_train, km_test, kernel
Exemple #39
0
def get_kernel_mat(fm_train_dna,
                   fm_test_dna,
                   N,
                   M,
                   pseudo=1e-1,
                   order=1,
                   gap=0,
                   reverse=False):

    # train HMM for positive class
    print "hmm training"
    charfeat = StringCharFeatures(fm_train_dna, DNA)
    #charfeat.io.set_loglevel(MSG_DEBUG)
    hmm_train = StringWordFeatures(charfeat.get_alphabet())
    hmm_train.obtain_from_char(charfeat, order - 1, order, gap, reverse)
    pos = HMM(hmm_train, N, M, pseudo)
    pos.baum_welch_viterbi_train(BW_NORMAL)
    neg = HMM(pos)

    print "Kernel training data"
    charfeat = StringCharFeatures(fm_train_dna, DNA)
    wordfeats_train = StringWordFeatures(charfeat.get_alphabet())
    wordfeats_train.obtain_from_char(charfeat, order - 1, order, gap, reverse)

    print "Kernel testing data"
    charfeat = StringCharFeatures(fm_test_dna, DNA)
    wordfeats_test = StringWordFeatures(charfeat.get_alphabet())
    wordfeats_test.obtain_from_char(charfeat, order - 1, order, gap, reverse)

    print "get kernel on training data"
    pos.set_observations(wordfeats_train)
    neg.set_observations(wordfeats_train)
    feats_train = FKFeatures(10, pos, neg)
    feats_train.set_opt_a(-1)  #estimate prior

    print 'getting feature matrix'
    v0 = feats_train.get_feature_vector(0)
    v1 = feats_train.get_feature_vector(1)
    print np.dot(v0, v1)
    kernel = LinearKernel(feats_train, feats_train)
    #kernel=PolyKernel(feats_train, feats_train, *kargs)
    km_train = kernel.get_kernel_matrix()
    print km_train.shape, km_train[0, 1]

    print "get kernel on testing data"
    pos_clone = HMM(pos)
    neg_clone = HMM(neg)
    pos_clone.set_observations(wordfeats_test)
    neg_clone.set_observations(wordfeats_test)
    feats_test = FKFeatures(10, pos_clone, neg_clone)
    feats_test.set_a(feats_train.get_a())  #use prior from training data
    kernel.init(feats_train, feats_test)
    km_test = kernel.get_kernel_matrix()
    return km_train, km_test, kernel