def loop_inner(L, infile, iterations, ratio):
    logger = logging.getLogger()
    logger.setLevel(logging.INFO)

    # leaves: A dictionary with key = (l,k), value = lambda
    leaves = load_lambdas(infile)
    for k in leaves:
        #leaves[k] /= 1000 if leaves[k]>1000 else 1
        leaves[k] /= 1000
    total_count = sum([leaves[k] for k in leaves])

    # Find set of true HHHes based on leaf-node lambdas.
    #ratio = 0.05
    eta = total_count * ratio
    hhh_nodes = findHHH(leaves, eta)
    Smax = len(hhh_nodes)
    tHHH = [(node.l, node.k) for node in hhh_nodes]
    tHHH = sorted(tHHH, key=lambda x: x[0], reverse=True)
    logger.info("True HHHes: %s", ', '.join([str(k) for k in tHHH]))

    # Number of counters
    T = Smax * 2 + 2

    # Run RWCB algo.
    sorted_leaf_tags = sorted(leaves.keys(), key=lambda x: x[1])
    lambda_lists = [leaves[k] for k in sorted_leaf_tags]

    name = 'Poisson'
    tmpFile = 'traffic_run_rwcb.txt'
    for i in range(iterations):
        # Generate one realization of traffic under Poisson distribution
        # leaf node lambdas are set as above.
        traffic_file = generate_traffic(lambda_lists, 1000, tmpFile)

        p_max = 1.0 - 1.0 / float(2**(1.0 / 3))
        p0 = 0.9 * p_max
        error, xi = 0.4, 1.0
        scale = 3.0 * L * get_constant(p0)

        errorList = [
            0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.499
        ]
        for error in errorList:
            error_0 = error / float(2.0 * Smax)

            # Run rwcb algo
            hhh_nodes, time_interval = run_one_instance(
                traffic_file, L, sorted_leaf_tags, name, p0, eta, error_0,
                scale, logging.WARNING, T, xi)
            mHHH = sorted(hhh_nodes.keys(), key=lambda x: x[0], reverse=True)
            o, p, r = error_function(mHHH, tHHH), precision(mHHH,
                                                            tHHH), recall(
                                                                mHHH, tHHH)
            logger.info(
                "Iter {0}, Level {1}, Ratio {2}, Error {3}, Error0 {4}: Time interval {5}, Error_function {6}, Precision {7}, Recall {8}, Counter {9}"
                .format(i, L, ratio, error, error_0, time_interval, o, p, r,
                        T))

        if i % 50 == 0:
            print "Finished %d iterations..." % (i, )
Exemple #2
0
def loop_inner(L, infile, iterations):
    # leaves: A dictionary with key = (l,k), value = lambda
    leaves = load_lambdas(infile)
    for k in leaves:
        leaves[k] /= 1000 if leaves[k] > 1000 else 1
        #leaves[k] /= 1000

    tmpFile = 'level{0}_lambdas.txt'.format(L)
    with open(tmpFile, 'wb') as ff:
        for (l, k) in sorted(leaves.keys(), key=lambda x: x[1]):
            line = ','.join([str(l), str(k), str(leaves[(l, k)])])
            ff.write(line + '\n')

    total_count = sum([leaves[k] for k in leaves])

    # Find set of true HHHes based on leaf-node lambdas.
    ratio = 0.05
    eta = total_count * ratio
    thhh_nodes = findHHH(leaves, eta)
    Smax = len(thhh_nodes)

    # Number of counters
    T = Smax * 2 + 2
    tHHH = [(node.l, node.k) for node in thhh_nodes]

    # Run RWCB algo.
    sorted_leaf_tags = sorted(leaves.keys(), key=lambda x: x[1])
    lambda_lists = [leaves[k] for k in sorted_leaf_tags]

    name = 'Poisson'
    tmpFile = 'traffic_tmp_rwcb.txt'
    for i in range(iterations):
        # Generate one realization of traffic under Poisson distribution
        # leaf node lambdas are set as above.
        traffic_file = generate_traffic(lambda_lists, 1000, tmpFile)

        p_max = 1.0 - 1.0 / float(2**(1.0 / 3))
        p0 = 0.9 * p_max
        error, xi = 0.01, 1.0
        error_0 = error / float(2.0 * Smax)

        max_scale = 3.0 * L * get_constant(p0)
        max_scale /= float(64)
        #scaleList = [10**(k) for k in range(int(math.log(max_scale, 10)))] + [max_scale]
        scaleList = [max_scale]
        for scale in scaleList:
            # Run rwcb algo
            mhhh_nodes, time_interval = run_one_instance(
                traffic_file, L, sorted_leaf_tags, name, p0, eta, error_0,
                scale, logging.WARNING, T, xi)
            mHHH = sorted(mhhh_nodes.keys(), key=lambda x: x[0], reverse=True)
            #print "True HHHes: %s" % ', '.join([str((node.l, node.k))+':'+str(node.val) for node in thhh_nodes])
            #print "Reported HHHes: %s" %  ', '.join([str(k)+':'+str(mhhh_nodes[k].x_mean_net) for k in mHHH])
            p, r = precision(mHHH, tHHH), recall(mHHH, tHHH)
            o = error_function(mHHH, tHHH)
            print "Iter {0}, Level {1}, Ratio {2}, Error {3}, Scale {4}: Time interval {5}, Error_function {6}, Precision {7}, Recall {8}, Counter {9}".format(
                i, L, ratio, error, scale, time_interval, o, p, r, T)
Exemple #3
0
def loop_inner(L, infile, iters, ratio):
    logger = logging.getLogger('loop_inner')
    logger.setLevel(logging.INFO)

    # leaves: A dictionary with key = (l,k), value = lambda
    leaves = load_lambdas(infile)
    for k in leaves:
        leaves[k] /= 1000 if leaves[k] > 1000 else 1
        #leaves[k] /= 1000
    total_count = sum([leaves[k] for k in leaves])

    # Find set of true HHHes based on leaf-node lambdas.
    #ratio = 0.05
    eta = total_count * ratio
    hhh_nodes = findHHH(leaves, eta)
    Smax = len(hhh_nodes)
    tHHH = [(node.l, node.k) for node in hhh_nodes]
    tHHH = sorted(tHHH, key=lambda x: x[0], reverse=True)
    logger.info("True HHHes: %s", ', '.join([str(k) for k in tHHH]))

    sorted_leaf_tags = sorted(leaves.keys(), key=lambda x: x[1])
    lambda_lists = [leaves[k] for k in sorted_leaf_tags]

    tmpFile = "traffic_run_minlan.txt"
    result = []
    for i in range(iters):
        # Generate one realization of traffic under Poisson distribution
        # leaf node lambdas are set as above.
        traffic_file = generate_traffic(lambda_lists, 1000, tmpFile)
        one_result = run_one_instance(tHHH, traffic_file, L, sorted_leaf_tags,
                                      eta, Smax, logging.WARNING)
        if not result:
            result = one_result
        else:
            result = [[pair[k] + one_result[idx][k] for k in range(3)]
                      for idx, pair in enumerate(result)]

        if i % 50 == 0:
            print "Finished %d iterations..." % (i, )

    result = [[pair[k] / float(iters) for k in range(3)] for pair in result]
    for idx, pair in enumerate(result):
        o, p, r = pair
        logger.info("Level %d, Ratio %f, Iterations %d, At time interval %d, Error_function %f, Precision %f, Recall %f", \
                L, ratio, iters, idx+1, o, p, r)
def loop_inner(L, infile, iters):
    # Logger
    logger = logging.getLogger()
    logger.setLevel(logging.INFO)

    # leaves: A dictionary with key = (l,k), value = lambda
    leaves = load_lambdas(infile)
    # Preprocess lambda range
    for k in leaves:
        leaves[k] /= 1000 if leaves[k] > 1000 else 1
    total_count = sum([leaves[k] for k in leaves])

    # Find set of true HHHes based on leaf-node lambdas.
    ratio = 0.05
    eta = total_count * ratio
    hhh_nodes = findHHH(leaves, eta)
    Smax = len(hhh_nodes)
    tHHH = [(node.l, node.k) for node in hhh_nodes]
    tHHH = sorted(tHHH, key=lambda x: x[0], reverse=True)

    tHHH_vals = [((node.l, node.k), node.val) for node in hhh_nodes]
    tHHH_vals = sorted(tHHH_vals, key=lambda x: x[0][0], reverse=True)
    #logger.info("True HHHes: %s", \
    #        ','.join(str(k) for k in tHHH))

    # Run Algorithms.
    sorted_leaf_tags = sorted(leaves.keys(), key=lambda x: x[1])
    lambda_lists = [leaves[k] for k in sorted_leaf_tags]

    for i in range(iters):
        # Generate one realization of traffic under Poisson distribution
        # leaf node lambdas are set as above.
        generate_traffic(lambda_lists, 1000)
        """ RWCB ALGO API """
        # Parameters
        p_max = 1.0 - 1.0 / float(2**(1.0 / 3))
        p0 = 0.9 * p_max
        error, xi = 0.4, 1.0
        error_0 = error / float(2.0 * Smax)

        # Instantiate a pointer
        scale = 3.0 * L * get_constant(p0)
        #scale = 1.0
        l, k = 0, 0
        pntr = Pointer_Poisson(l, k, L, p0, eta, error_0, scale, logging.DEBUG,
                               0, xi)
        time_interval = 0

        # Keep monitoring detected HHH nodes
        # key: (l,k), val: newNode object
        HHH_nodes = {}
        infile = "traffic_tmp.txt"

        with open(infile, 'rb') as ff:
            for line in ff:
                time_interval += 1
                values = [int(k) for k in line.split(',')]
                dvalues = construct(values, sorted_leaf_tags)

                # Keep monitoring detected HHH nodes
                read_hhh_nodes(dvalues, HHH_nodes)
                hhh_node = pntr.run(dvalues, HHH_nodes)
                # If found a new HHH node, add it to the HHH_nodes set.
                if hhh_node:
                    HHH_nodes[(hhh_node.l, hhh_node.k)] = hhh_node
                    print HHH_nodes
                if not pntr.isActive():
                    break
        print "Time interval: %d" % time_interval

        # Calculating metrics
        mHHH = sorted(HHH_nodes.keys(), key=lambda x: x[0], reverse=True)
        mHHH_vals = [(k, HHH_nodes[k].x_mean_net) for k in HHH_nodes]
        mHHH_vals = sorted(mHHH_vals, key=lambda x: x[0][0], reverse=True)
        print "True HHHes: ", tHHH_vals
        print "Measured HHHes: ", mHHH_vals

        p, r = precision(mHHH, tHHH), recall(mHHH, tHHH)
        print "Iter {0}, Level {1}: Time interval {2}, Precision {3}, Recall {4}".format(
            i, L, time_interval, p, r)
Exemple #5
0
def loop_inner(L, infile, iters):
    # Logger
    logger = logging.getLogger()
    logger.setLevel(logging.INFO)

    # leaves: A dictionary with key = (l,k), value = lambda
    leaves = load_lambdas(infile)
    # Preprocess lambda range
    for k in leaves:
        leaves[k] /= 1000 if leaves[k]>1000 else 1
    total_count = sum([leaves[k] for k in leaves])

    # Find set of true HHHes based on leaf-node lambdas.
    ratio = 0.05
    eta = total_count * ratio
    hhh_nodes = findHHH(leaves, eta)
    Smax = len(hhh_nodes)
    tHHH = [(node.l, node.k) for node in hhh_nodes]
    tHHH = sorted(tHHH, key = lambda x:x[0], reverse=True)

    tHHH_vals = [((node.l, node.k), node.val) for node in hhh_nodes]
    tHHH_vals = sorted(tHHH_vals, key = lambda x:x[0][0], reverse=True)
    print tHHH
    print tHHH_vals
    #logger.info("True HHHes: %s", \
    #        ','.join(str(k) for k in tHHH))

    # Run Algorithms.
    sorted_leaf_tags = sorted(leaves.keys(), key = lambda x:x[1])
    lambda_lists = [leaves[k] for k in sorted_leaf_tags]

    # Calculate for parameter u
    sigma2 = 0.70
    u = 0
    for curr_l in lambda_lists:
        sigma = math.sqrt(sigma2)
        mu = math.log(curr_l)-(sigma**2)/2.0
        tmp = math.exp(2.0*mu + 2.0*sigma**2)
        if u < tmp:
            u = tmp
    print "u: ", u
    # Parameters
    p_max = 1.0 - 1.0/float(2**(1.0/3))
    p0 = 0.9*p_max
    b = 2.0
    # Scale for test functions
    Fval = 4*u**(1/float(b))*(math.log(2.0*1.0**3/float(p0))/float(1.0))**((b-1)/float(b))
    cF = eta/float(Fval)*1.05
    # Scale for truncated threshold
    threshold = (u*float(1.0)/math.log(1.0/float(p0)))**(1.0/float(b))
    cS = total_count/float(threshold)/2.0
    print "cF, cS", cF, cS

    for i in range(iters):
        # Generate one realization of traffic under Poisson distribution
        # leaf node lambdas are set as above.
        generate_ht(lambda_lists, sigma2, 5000)

        """ RWCB ALGO API """
        # Parameters
        error =  0.4
        error_0 = error/float(2.0*Smax)

        # Instantiate a pointer
        scale = 3.0*L*get_constant(p0)
        #scale = 1.0
        l, k = 0, 0
        pntr = Pointer_HT(l, k, L, p0, eta, error_0, scale, logging.DEBUG, 0, b, u, cF, cS)
        time_interval = 0

        # Keep monitoring detected HHH nodes
        # key: (l,k), val: newNode object
        HHH_nodes = {}
        infile = "traffic_tmp.txt"

        with open(infile, 'rb') as ff:
            for line in ff:
                time_interval += 1
                values = [int(k) for k in line.split(',')]
                dvalues = construct(values, sorted_leaf_tags)

                # Keep monitoring detected HHH nodes
                read_hhh_nodes(dvalues, HHH_nodes)
                hhh_node = pntr.run(dvalues, HHH_nodes)
                # If found a new HHH node, add it to the HHH_nodes set.
                if hhh_node:
                    HHH_nodes[(hhh_node.l, hhh_node.k)] = hhh_node
                    print HHH_nodes
                if not pntr.isActive():
                    break
        print "Time interval: %d" % time_interval

        # Calculating metrics
        mHHH = sorted(HHH_nodes.keys(), key = lambda x:x[0], reverse=True)
        mHHH_vals = [(k, HHH_nodes[k].x_mean_net) for k in HHH_nodes]
        mHHH_vals = sorted(mHHH_vals, key = lambda x:x[0][0], reverse=True)
        print "True HHHes: ", tHHH_vals 
        print "Measured HHHes: ", mHHH_vals

        p, r = precision(mHHH, tHHH), recall(mHHH, tHHH)
        print "Iter {0}, Level {1}: Time interval {2}, Precision {3}, Recall {4}".format(i, L, time_interval, p, r)