Exemple #1
0
def show_result(out_dir, run_name):
    # import required libraries and submodules of georef_webcam
    import os, subprocess, time, platform
    import modules.aux_results as aux_res

    # select octave fig file, which should be plotted
    selected_file = aux_res.select_PRACTISE_files(out_dir, run_name,
                                                  '_auto.ofig')

    ##### write file with octave commands to open that figure
    with open(os.path.join(out_dir, 'run_image.m'), 'w') as octave_file:
        octave_file.write('graphics_toolkit ("fltk")\n')
        if (platform.system() == 'Windows'):
            octave_file.write('hgload("' +
                              '/'.join(str(selected_file).split('\\')) +
                              '")\n')
        else:
            octave_file.write('hgload("' + selected_file + '")\n')
        octave_file.write('waitforbuttonpress()')

    ##### open figure with octave (execution depends on platform: Windows or Linux)
    if (platform.system() == 'Windows'):
        python_wd = os.getcwd()
        os.chdir(out_dir)
        subprocess.Popen("octave --force-gui run_image.m",
                         shell=True,
                         stdout=subprocess.PIPE)
        os.chdir(python_wd)
    else:
        subprocess.Popen(
            ["octave", os.path.join(out_dir, 'run_image.m')],
            stdout=subprocess.PIPE)
    time.sleep(5)  # wait 5 s until execution continues
Exemple #2
0
def extract_params(input_dict, run_name, in_dir=False):
    # import required libraries and submodules of georef_webcam
    import os, json
    import modules.aux_results as aux_res
    import modules.aux_functions as aux_func
    import procedures.collect_projection_parameters as collect_params
    
    # select octave file, which contains information about optimized projection parameters
    result_file = aux_res.select_PRACTISE_files(input_dict['path'], run_name, '_proj.mat')
    
    ##### Extract information from PRACTISE output
    print("Extract information from PRACTISE output...")
    with open(result_file, 'r') as output:
        result_output = output.readlines()
    # Extract parameters
    pos_E = aux_res.get_data_from_PRACTISE(result_output, 5)
    pos_N = aux_res.get_data_from_PRACTISE(result_output, 6)
    offset = aux_res.get_data_from_PRACTISE(result_output, 23)
    roll_ang = aux_res.get_data_from_PRACTISE(result_output, 28, single_value = True)[0]
    foc_len = aux_res.get_data_from_PRACTISE(result_output, 33, single_value = True)[0]*1000
    sen_width = aux_res.get_data_from_PRACTISE(result_output, 104, single_value = True)[0]*1000
    sen_height = aux_res.get_data_from_PRACTISE(result_output, 99, single_value = True)[0]*1000
    buf = aux_res.get_data_from_PRACTISE(result_output, 240, single_value = True)[0]
    cam_pos = (pos_E[0], pos_N[0])
    tar_pos = (pos_E[1], pos_N[1])
    
    ##### Create new dictionary 
    new_dict = collect_params.write_dict(input_dict['image_file'], input_dict['dem_file'], cam_pos, tar_pos, 
                          offset[0], offset[1], input_dict['path'], roll_angle = roll_ang, 
                          focal_length = foc_len, sensor_width = sen_width, sensor_height = sen_height, 
                          buffer = buf, cam_epsg = input_dict['var_add']['camera_epsg'])
    
    ##### keep old GCPs, if wanted
    if aux_func.check_input("Do you want to keep the Ground Control Points for further processing?"):
        new_dict['gcp_file'] = input_dict['gcp_file']
        new_dict['var_add']['opt_boundaries'] = input_dict['var_add']['opt_boundaries']
        
    ##### store result in json-file, if wanted
    if aux_func.check_input("Do you want to save extracted dictionary with optimzed parameters as new json-file?"):
        run_name = input('Old filename: '+ run_name + ' \nPlease enter a new filename: \n')
    	##### write resulting dict to json file
        if not in_dir:
            in_dir = input('Please enter a directory, where json-file should be stored: \n')
        print('\n\nCollected parameters are stored in json file:')
        print(os.path.join(in_dir,run_name+".json"))
        jsonfile = json.dumps(new_dict)
        f = open(os.path.join(in_dir,run_name+".json"),"w")
        f.write(jsonfile)
        f.close()
    
    # return the created dictionary and new name of run to main procedure
    return new_dict, run_name
Exemple #3
0
def calc_result(input_dict, run_name):
    # import required libraries and submodules of georef_webcam
    import os, shutil
    import numpy as np
    import modules.aux_functions as aux_func
    import modules.aux_results as aux_res

    # create directory for georef_webcam results
    output_dir = os.path.join(input_dict['path'], 'georef_result', run_name)
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)

    # select octave file, which contains PRACTISE georeferencing results
    result_file = aux_res.select_PRACTISE_files(input_dict['path'], run_name,
                                                '_proj.mat')

    ############### Extract information from PRACTISE output ##################
    print("Extract information from PRACTISE output...")
    # read mat-file
    with open(result_file, 'r') as output:
        result_output = output.readlines()
    # get number of columns and no of rows of image
    rows = int(result_output[109])
    cols = int(result_output[114])
    # get position in image of all projected DEM points
    img_col = aux_res.get_data_from_PRACTISE(result_output, 167)
    img_row = aux_res.get_data_from_PRACTISE(result_output, 168)
    points = [(int(img_row[pt]), int(img_col[pt]))
              for pt in range(len(img_col))]
    # create interpolation grid
    interpolation_grid = np.mgrid[0:rows, 0:cols]

    ############### calculate results #########################################
    ##### decide, which results should be produced
    print("Which results should be produced?")
    selected_results = aux_func.select_choices([
        'rasters with easting and northing coordinate + mask',
        '+ altitude raster', '+ distance to camera', '+ projected image',
        'all results'
    ], True)

    ##### interpolate coordinate rasters
    print('Start interpolation of coordinates rasters ...')
    # select interpolation style: nearest neighbor or bilinear
    print(
        'How do you want to interpolate the coordinate rasters? Nearest neighbor or Bilinear?'
    )
    interpolate = aux_func.select_choices(['nearest', 'linear'])[0]
    # interpolate coordinate (E & N) rasters
    east_raster = aux_res.interpolate_raster(aux_res.get_data_from_PRACTISE(
        result_output, 135),
                                             points,
                                             interpolation_grid,
                                             output_dir,
                                             "east_raster.tif",
                                             interpolation_type=interpolate)
    north_raster = aux_res.interpolate_raster(aux_res.get_data_from_PRACTISE(
        result_output, 136),
                                              points,
                                              interpolation_grid,
                                              output_dir,
                                              "north_raster.tif",
                                              interpolation_type=interpolate)
    # interpolate altitude raster (optional)
    if (set(['+ altitude raster',
             'all results']).intersection(selected_results)):
        alt_raster = aux_res.interpolate_raster(aux_res.get_data_from_PRACTISE(
            result_output, 137),
                                                points,
                                                interpolation_grid,
                                                output_dir,
                                                "alt_raster.tif",
                                                interpolation_type=interpolate)
        del alt_raster

    ##### copy image to output directory and save directory to dem for prj information
    shutil.copy2(input_dict['image_file'], output_dir)
    with open(os.path.join(output_dir, 'dem_file.txt'), 'w') as dem_file:
        dem_file.write(input_dict['dem_file'])

    ##### generate mask to filter areas above skyline
    # calculate distance to DEM points in image plane to get skyline
    dist_pts_raster = aux_res.calculate_distance_raster(
        points, interpolation_grid, output_dir)
    # create mask
    aux_res.create_mask(dist_pts_raster, output_dir)

    ##### calculate distance to camera (optional)
    #           edges in panoramic view can be derived from that
    if (set(['+ distance to camera',
             'all results']).intersection(selected_results)):
        pos_E = aux_res.get_data_from_PRACTISE(result_output, 5)
        pos_N = aux_res.get_data_from_PRACTISE(result_output, 6)
        cam_pos = (pos_E[0], pos_N[0])
        dist_raster = np.sqrt((east_raster - cam_pos[0])**2 +
                              (north_raster - cam_pos[1])**2)
        aux_res.write_array_as_geotiff(dist_raster, output_dir,
                                       "dist_raster.tif")

    ##### project image to map
    if (set(['+ projected image',
             'all results']).intersection(selected_results)):
        aux_res.call_project_image(input_dict, output_dir)