def evaluate(self): classifier = Recurrent() classifier.retrieve_samples(Path.FEATURE_PATH) classifier.evaluate() classifier.relevance.output_confusion_matrix("{}confusion_matrix{}.png".format(Path.RESULT_PATH, self.run_name)) classifier.relevance.output_statistics("{}statistics.md".format(Path.RESULT_PATH), self.run_name)
def predict(self, session_id): self.process(session_id) classifier = Recurrent() classifier.retrieve_sample("{}{}.data".format(Path.FEATURE_PATH, session_id), is_labelled=False) classifier.evaluate(is_labelled=False)
def evaluate(self): classifier = Recurrent() classifier.retrieve_samples(Path.FEATURE_PATH) classifier.evaluate() classifier.relevance.output_confusion_matrix( "{}confusion_matrix{}.png".format(Path.RESULT_PATH, self.run_name)) classifier.relevance.output_statistics( "{}statistics.md".format(Path.RESULT_PATH), self.run_name)
def get_classifier(self, neurons_per_layer): classifier = Recurrent(neurons_per_layer) classifier.retrieve_samples(Path.FEATURE_PATH) return classifier