app = "_" + str(time.time()) model_file_raw += app model_file = model_file_raw + ".skl" # X = x[:, i] X = x # print(np.shape(x)) # print(np.shape(y)) n_train_percent = config["train_percent"] x_train, y_train = classifiers.split_dataset_train( X, y, n_train_percent) x_test, y_test = classifiers.split_dataset_test(X, y, n_train_percent) dt = 0 if not use_saved_model: tstart = time.time() model = classifiers.create_svm_multiclass() model, acc = classifiers.train_decision_tree( model, x_train, y_train) dt = time.time() - tstart else: model = model_loader.load_sklearn_model(model_file) model, acc, diff, total, _ = classifiers.predict_decision_tree( model, x_train, y_train, False)
# if y2 is None: # y2 = [y21] # # print(y2) # # print([y21]) # else: # y2 = np.append(y2, [y21], axis=0) # y = y2 # print(y) # quit(0) x_train, y_train = classifiers.split_dataset_train(x, y, train_percent) x_eval, y_eval = classifiers.split_dataset_test(x, y, train_percent) print("end select data") quit(0) ## sizex = np.shape(x_train) top_acc = 0 top_model_filename = None # run multiple evaluations (each training may return different results in terms of accuracy) for i in range(n_reps): print("evaluating model rep: " + str(i) + "/" + str(n_reps)) # session = K.get_session()