logger.info('Running on {}'.format(cohort)) for i in range(0, hdf5_file[cohort].shape[0]): # cropping operation logger.debug('{}:- Patient {}'.format(cohort, i + 1)) img_src = hdf5_file[cohort][i] coords = config['cropping_coords'] if 'segmasks' in cohort: # there are no channels for segmasks img_dst = img_src[coords[0]:coords[1], coords[2]:coords[3], coords[4]:coords[5]] else: img_dst = img_src[:, coords[0]:coords[1], coords[2]:coords[3], coords[4]:coords[5]] if cohort in list_std: # save the image to this numpy array im_np[i] = img_dst print(img_src.max(), img_dst.max()) new_group_preprocessed[cohort][i] = img_dst # find mean and standard deviation, and apply to data. Also write the mean/std values to disk if cohort in list_std: logger.info('The dataset {} needs standardization'.format(cohort)) _tmp, vals = standardize(im_np, findMeanVarOnly=True, saveDump=(config['pathd_hdf5files']/(cohort + '_mean_std.p'))) logging.info('Calculated normalization values for {}:\n{}'.format(cohort, vals)) del im_np # ==================================================================================== hdf5_file_main.close() new_hdf5.close()
logger.info('Running on {}'.format(run_on)) for i in range(0, hdf5_file[run_on].shape[0]): # cropping operation logger.debug('{}:- Patient {}'.format(run_on, i+1)) im = hdf5_file[run_on][i] m = config['cropping_coords'] if 'segmasks' in run_on: # there are no channels for segmasks k = im[m[0]:m[1], m[2]:m[3], m[4]:m[5]] else: k = im[:, m[0]:m[1], m[2]:m[3], m[4]:m[5]] if run_on in std_list: # save the image to this numpy array im_np[i] = k new_group_preprocessed[run_on][i] = k # find mean and standard deviation, and apply to data. Also write the mean/std values to disk if run_on in std_list: logger.info('The dataset {} needs standardization'.format(run_on)) _tmp, vals = standardize(im_np, findMeanVarOnly=True, saveDump=saveMeanVarFilename + run_on + '_mean_std.p') logging.info('Calculated normalization values for {}:\n{}'.format(run_on, vals)) del im_np # ==================================================================================== hdf5_file_main.close() new_hdf5.close()