Exemple #1
0
def main():
    cfg = load_yaml('./configs/arc_res50_mask.yaml')
    model = ArcFaceModel(size=cfg['input_size'],
                         backbone_type=cfg['backbone_type'],
                         num_classes=cfg['num_classes'],
                         head_type=cfg['head_type'],
                         embd_shape=cfg['embd_shape'],
                         w_decay=cfg['w_decay'],
                         training=False)
    model.summary()

    ckpt_path = tf.train.latest_checkpoint('./checkpoints/' + cfg['sub_name'])
    if ckpt_path is not None:
        print("[*] load ckpt from {}".format(ckpt_path))
        model.load_weights(ckpt_path)
    else:
        print("[*] training from scratch.")

    temp1 = np.ones((62,112,3))
    temp2 = np.zeros((50,112,3))
    masked_img = np.concatenate([temp1, temp2], axis =0)

    path_img1 = '/home/anhdq23/Desktop/nguyen/data/AR/test2/M-002-12.bmp'
    path_img2 = '/home/anhdq23/Desktop/nguyen/data/AR/test2/M-003-01.bmp'
    img1 = Image.open(path_img1)
    img1 = img1.resize((112, 112))
    img1 = np.array(img1)/255.0
    

    img2 = Image.open(path_img2)
    img2 = img2.resize((112, 112))
    img2 = np.array(img2)/255.0 
    mask_img2 = np.multiply(img2, masked_img)

    fc1 = model.predict(mask_img2.reshape((1,112,112,3)))
    norm_fc1 = preprocessing.normalize(fc1.reshape((1,512)), norm='l2', axis=1)

    fc2 = model.predict(img2.reshape((1,112,112,3)))
    norm_fc2 = preprocessing.normalize(fc2.reshape((1,512)), norm='l2', axis=1)
    
    diff = np.subtract(norm_fc1, norm_fc2)
    dist = np.sqrt(np.sum(np.square(diff), 1))/2
    print(dist)
    
    for i in np.arange(20):
        print(np.sqrt(np.sum(np.square(diff[0][i*25:i*25+25]), 0))/2)

    fig = plt.figure()
    ax = fig.add_subplot(2,1,1)
    ax.plot(np.arange(512), norm_fc1[0])

    # ax = fig.add_subplot(2,1,2)
    ax.plot(np.arange(512), norm_fc2[0])
    ax = fig.add_subplot(2,1,2)
    ax.plot(np.arange(512), diff[0])
    plt.show()
Exemple #2
0
def main(args):
    ijbc_meta = np.load(args.meta_path)

    os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu

    logger = tf.get_logger()
    logger.disabled = True
    logger.setLevel(logging.FATAL)
    set_memory_growth()

    #cfg = load_yaml('configs/arc_res50.yaml')
    cfg = load_yaml(args.config_path)

    model = ArcFaceModel(size=cfg['input_size'],
                         backbone_type=cfg['backbone_type'],
                         training=False)

    ckpt_path = tf.train.latest_checkpoint('./checkpoints/' + cfg['sub_name'])
    if ckpt_path is not None:
        print("[*] load ckpt from {}".format(ckpt_path))
        model.load_weights(ckpt_path)
    else:
        print("[*] Cannot find ckpt from {}.".format(ckpt_path))
        exit()

    img_names = [
        os.path.join(args.input_path,
                     img_name.split('/')[-1])
        for img_name in ijbc_meta['img_names']
    ]

    embedding_size = cfg['embd_shape']
    batch_size = cfg['batch_size']
    img_size = cfg['input_size']

    def read_img(filename):
        raw = tf.io.read_file(filename)
        img = tf.image.decode_jpeg(raw, channels=3)
        img = tf.cast(img, tf.float32)
        img = img / 255
        return img

    dataset = tf.data.Dataset.from_tensor_slices(img_names)
    dataset = dataset.map(read_img,
                          num_parallel_calls=tf.data.experimental.AUTOTUNE)
    dataset = dataset.batch(batch_size)
    dataset = dataset.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)
    embeddings = model.predict(dataset, batch_size=batch_size, verbose=1)

    print('embeddings', embeddings.shape)
    np.save(args.output_path, embeddings)
Exemple #3
0
def main():
    # with open('/home/anhdq23/Desktop/nguyen/VT_simulation/weights/arcface_ret50.json', 'r') as f:
    #     model_json = json.load(f)
    # model = model_from_json(model_json)
    # model.load_weights('/home/anhdq23/Desktop/nguyen/VT_simulation/weights/arcface_ret50.h5')
    # model.summary()
    cfg = load_yaml('./configs/arc_res50_new.yaml')
    model = ArcFaceModel(size=cfg['input_size'],
                         backbone_type=cfg['backbone_type'],
                         num_classes=cfg['num_classes'],
                         head_type=cfg['head_type'],
                         embd_shape=cfg['embd_shape'],
                         w_decay=cfg['w_decay'],
                         training=False)
    model.summary()
    ckpt_path = tf.train.latest_checkpoint('./checkpoints/' + cfg['sub_name'])
    print(ckpt_path)
    if ckpt_path is not None:
        print("[*] load ckpt from {}".format(ckpt_path))
        model.load_weights(ckpt_path)
    else:
        print("[*] training from scratch.")

    model_mask = ArcFaceModel(size=cfg['input_size'],
                    backbone_type=cfg['backbone_type'],
                    num_classes=cfg['num_classes'],
                    head_type=cfg['head_type'],
                    embd_shape=cfg['embd_shape'],
                    w_decay=cfg['w_decay'],
                    training=False)
    ckpt_path = tf.train.latest_checkpoint('./checkpoints/' + 'arc_res50_mask')
    print(ckpt_path)
    if ckpt_path is not None:
        print("[*] load ckpt from {}".format(ckpt_path))
        model_mask.load_weights(ckpt_path)
    else:
        print("[*] training from scratch.")

    import sys
    sys.path.append('/home/anhdq23/Desktop/nguyen/VT_simulation/')
    from detector import get_detector
    predictor = get_detector()

    ICPR_dict = dict()
    path_ICPR = '/home/anhdq23/Desktop/nguyen/data/ICPR_cropped_face'
    for name_fold in os.listdir(path_ICPR):
        print(name_fold)
        path_fold = os.path.join(path_ICPR, name_fold)
        if name_fold not in ICPR_dict.keys():
            ICPR_dict[name_fold] = []
        for name_image in os.listdir(path_fold):
            path_image = os.path.join(path_fold, name_image)
            if '60' not in name_image[-10:-4] and '90' not in name_image[-10:-4]\
                and '75' not in name_image[-10:]:
                image = Image.open(path_image)
                image = expand2square(image, (255, 255, 255))
                image = image.resize((112, 112))
                image = np.array(image)/255.0 
                _, labels, _ = predictor.predict(image, 1500/2, 0.6) 
                if labels.numpy()[0] == 1:
                    fc1 = model_mask.predict(image.reshape((1,112,112,3)))
                    norm_fc1 = preprocessing.normalize(fc1.reshape((1,cfg['embd_shape'])), norm='l2', axis=1)

                else:
                    fc1 = model.predict(image.reshape((1,112,112,3)))
                    norm_fc1 = preprocessing.normalize(fc1.reshape((1,cfg['embd_shape'])), norm='l2', axis=1)
                ICPR_dict[name_fold].append(norm_fc1)

    path_ICPR = '/home/anhdq23/Desktop/nguyen/data/ICPR_cropped_face'
    anchor_list = []
    name_list = []
    for name_fold in os.listdir(path_ICPR):
        print(name_fold)
        path_fold = os.path.join(path_ICPR, name_fold)
        for name_image in os.listdir(path_fold):
            path_image = os.path.join(path_fold, name_image)
            if '+0+0' in name_image[-10:] or '+0-15' in name_image[-10:] or\
            '+0+15' in name_image[-10:] or '+15+0' in name_image[-10:] or\
            '-15+0' in name_image[-10:]:
                print(name_image)
                image = Image.open(path_image)
                image = expand2square(image, (255, 255, 255))
                image = image.resize((112, 112))
                image = np.array(image)/255.0 
                _, labels, _ = predictor.predict(image, 1500/2, 0.6) 
                if labels.numpy()[0] == 1:
                    fc1 = model_mask.predict(image.reshape((1,112,112,3)))
                    norm_fc1 = preprocessing.normalize(fc1.reshape((1,cfg['embd_shape'])), norm='l2', axis=1)

                else:
                    fc1 = model.predict(image.reshape((1,112,112,3)))
                    norm_fc1 = preprocessing.normalize(fc1.reshape((1,cfg['embd_shape'])), norm='l2', axis=1)
                
                anchor_list.append(norm_fc1)
                name_list.append(name_fold)

    # Init faiss
    import faiss
    count_true = 0
    count_all = 0 
    res = faiss.StandardGpuResources()  # use a single GPU
    index_flat = faiss.IndexFlatL2(512)
    # gpu_index_flat = faiss.index_cpu_to_gpu(res, 0, index_flat)
    gpu_index_flat = index_flat
    gpu_index_flat.add(np.array(anchor_list).reshape((-1,512)))
    for key in list(ICPR_dict.keys()):
        for feature in ICPR_dict[key]:
            D, I = gpu_index_flat.search(feature, k=1)  # actual search
            print(key, name_list[I[0][0]])
            if key == name_list[I[0][0]]:
                count_true +=1
            count_all +=1
    print(count_true, count_all)
def main():
    # with open('/home/anhdq23/Desktop/nguyen/VT_simulation/weights/arcface_ret50.json', 'r') as f:
    #     model_json = json.load(f)
    # model = model_from_json(model_json)
    # model.load_weights('/home/anhdq23/Desktop/nguyen/VT_simulation/weights/arcface_ret50.h5')
    # model.summary()
    cfg = load_yaml('./configs/arc_res50_mix.yaml')
    model = ArcFaceModel(size=cfg['input_size'],
                         backbone_type=cfg['backbone_type'],
                         num_classes=cfg['num_classes'],
                         head_type=cfg['head_type'],
                         embd_shape=cfg['embd_shape'],
                         w_decay=cfg['w_decay'],
                         training=False)
    model.summary()
    ckpt_path = tf.train.latest_checkpoint('./checkpoints/' + cfg['sub_name'])
    print(ckpt_path)
    if ckpt_path is not None:
        print("[*] load ckpt from {}".format(ckpt_path))
        model.load_weights(ckpt_path)
    else:
        print("[*] training from scratch.")
    # # serialize model to JSON
    # model_json = model.to_json()
    # with open("/home/anhdq23/Desktop/nguyen/image-segmentation-keras/weights/arc_res50_new.json", "w") as json_file:
    #     json.dump(model_json, json_file)
    # model_mask.save_weights("/home/anhdq23/Desktop/nguyen/VT_simulation/weights/arc_res50_mask.h5")

    data_path = '/home/anhdq23/Desktop/nguyen/arcface-tf2/data'
    lfw, lfw_issame = get_val_pair(data_path, 'lfw_align_112/lfw')
    lfw = np.transpose(lfw, [0, 2, 3, 1]) * 0.5 + 0.5

    image_1 = lfw[0::2]
    image_2 = lfw[1::2]
    
    dist_all = []
    for idx in range(len(lfw_issame)):
        print(idx)
        fc1 = model.predict(image_1[idx].reshape((1,112,112,3)))
        norm_fc1 = preprocessing.normalize(fc1.reshape((1,cfg['embd_shape'])), norm='l2', axis=1)

        fc2 = model.predict(image_2[idx].reshape((1,112,112,3)))
        norm_fc2 = preprocessing.normalize(fc2.reshape((1,cfg['embd_shape'])), norm='l2', axis=1)

        # dist = tf.keras.losses.cosine_similarity(fc1.reshape((1,512)), fc2.reshape((1,512)))
        diff = np.subtract(norm_fc1, norm_fc2)
        dist = np.sqrt(np.sum(np.square(diff), 1))/2
        dist_all.extend(dist)

    plt.plot(dist_all)
    plt.show()
    thresholds = np.arange(0, 1, 0.01)

    tpr_all = []
    fpr_all = []
    for thr in thresholds:
        tpr, fpr, acc, f1 = calculate_accuracy(thr, np.array(dist_all), lfw_issame)
        top_left = np.sqrt((1-tpr)**2 + fpr**2)
        print('thr %.4f' % thr , 'tpr %.4f' % tpr, 'fpr %.4f' % fpr, \
        'top left %.4f' % top_left, 'acc %.4f' % acc, 'f1_score %.4f'%f1)
        # top_left_batch.append(top_left)
        tpr_all.append(tpr)
        fpr_all.append(fpr)

    for threshold in thresholds:
        predict_issame = np.less(np.array(dist_all), threshold)
        conf_matrix = confusion_matrix(lfw_issame, predict_issame)
        print(conf_matrix)

    plt.figure()
    lw = 2
    plt.plot(fpr_all, tpr_all, color='darkorange',
            lw=lw, label='ROC curve')
    plt.xlim([0.0, 1.])
    plt.ylim([0.0, 1.])
    plt.xlabel('False Positive Rate')
    plt.ylabel('True Positive Rate')
    plt.title('Receiver operating characteristic')
    plt.legend(loc="lower right")
    plt.show()