Exemple #1
0
def prediction_publisher(prediction_topic, rate):
    """publisher"""
    pub = rospy.Publisher(prediction_topic, String, queue_size=1)
    rospy.init_node('prediction', anonymous=True)
    rate = rospy.Rate(rate)
    seq_num = 1
    while not rospy.is_shutdown():
        prediction = PredictionObstacles()
        prediction.header.sequence_num = seq_num
        prediction.header.timestamp_sec = rospy.Time.now().to_sec()
        prediction.header.module_name = "prediction"
        print str(prediction)
        s = String()
        s.data = prediction.SerializeToString()
        pub.publish(s)
        seq_num += 1
        rate.sleep()
def prediction_publisher(prediction_channel, rate):
    """publisher"""
    cyber.init()
    node = cyber.Node("prediction")
    writer = node.create_writer(prediction_channel, PredictionObstacles)
    prediction = PredictionObstacles()
    prediction.header.sequence_num = seq_num
    prediction.header.timestamp_sec = cyber_time.Time.now().to_sec()
    prediction.header.module_name = "prediction"
    i=0
    writer.write(prediction)
    seq_num += 1
    time.sleep(sleep_time)
Exemple #3
0
def prediction_publisher(prediction_channel, rate):
    """publisher"""
    cyber.init()
    node = cyber.Node("prediction")
    writer = node.create_writer(prediction_channel, PredictionObstacles)
    sleep_time = 1.0 / rate
    seq_num = 1
    while not cyber.is_shutdown():
        prediction = PredictionObstacles()
        prediction.header.sequence_num = seq_num
        prediction.header.timestamp_sec = cyber_time.Time.now().to_sec()
        prediction.header.module_name = "prediction"
        print(str(prediction))
        writer.write(prediction)
        seq_num += 1
        time.sleep(sleep_time)
                second_last = points[point_num - 2]
                last_point = points[point_num - 1]
                x_diff = last_point.x - second_last.x
                y_diff = last_point.y - second_last.y
                t_diff = last_point.t - second_last.t
                delta_diff = math.sqrt(x_diff ** 2 + y_diff ** 2)
                cur_len = trajectory_length
                while cur_len < min_length:
                    last_point.x += x_diff
                    last_point.y += y_diff
                    last_point.t += t_diff
                    p = points.add()
                    p.CopyFrom(last_point)
                    last_point = p
                    cur_len += delta_diff
    return prediction


if __name__ == '__main__':
    parser = argparse.ArgumentParser(description="extend prediction trajectory")
    parser.add_argument("prediction", action="store", type=str, help="set the prediction file")
    parser.add_argument("-p", "--period", action="store", type=float, default=10.0,
            help="set the prediction period")
    parser.add_argument("-d", "--distance", action="store", type=float, default=70.0,
            help="set the prediction distance")
    args = parser.parse_args()
    prediction_data = proto_utils.get_pb_from_file(args.prediction,
                                                   PredictionObstacles())
    extended_prediction = extend_prediction(prediction_data, args.distance, args.period)
    print extended_prediction
Exemple #5
0
                y_diff = last_point.path_point.y - second_last.path_point.y
                t_diff = last_point.path_point.theta - second_last.path_point.theta
                delta_diff = math.sqrt(x_diff ** 2 + y_diff ** 2)
                cur_len = trajectory_length
                while cur_len < min_length and abs(cur_len) > 0.000001:
                    last_point.path_point.x += x_diff
                    last_point.path_point.y += y_diff
                    last_point.path_point.theta += t_diff
                    p = points.add()
                    p.CopyFrom(last_point)
                    last_point = p
                    cur_len += delta_diff
    return prediction


if __name__ == '__main__':
    parser = argparse.ArgumentParser(
        description="extend prediction trajectory")
    parser.add_argument("prediction", action="store",
                        type=str, help="set the prediction file")
    parser.add_argument("-p", "--period", action="store", type=float, default=10.0,
                        help="set the prediction period")
    parser.add_argument("-d", "--distance", action="store", type=float, default=70.0,
                        help="set the prediction distance")
    args = parser.parse_args()
    prediction_data = proto_utils.get_pb_from_file(
        args.prediction, PredictionObstacles())
    extended_prediction = extend_prediction(
        prediction_data, args.distance, args.period)
    print(extended_prediction)
    prediction.header.module_name = "prediction"
    i=0
    writer.write(prediction)
    seq_num += 1
    time.sleep(sleep_time)


if __name__ == '__main__':
    parser = argparse.ArgumentParser(description="create empty prediction message",
                                     prog="replay_prediction.py")
    parser.add_argument("-c", "--channel", action="store", type=str, default="/apollo/prediction",
                        help="set the prediction channel")
    parser.add_argument("-r", "--rate", action="store", type=int, default=10,
                        help="set the prediction channel publish time duration")
    args = parser.parse_args()
    cyber.init()
    node = cyber.Node("prediction")
    node.create_reader("/apollo/perception/obstacles", PerceptionObstacles, receive_perception_obstacles)
    writer = node.create_writer(args.channel, PredictionObstacles)
    sleep_time = 1.0 / args.rate
    seq_num = 1
    while not cyber.is_shutdown():
        prediction = PredictionObstacles()
        prediction.header.sequence_num = seq_num
        prediction.header.timestamp_sec=cyber_time.Time.now().to_sec()
        prediction.header.module_name="fake_prediction"
        for obstacle in obstacles_:
            prediction_obstacle=prediction.prediction_obstacle.add()
            prediction_obstacle.perception_obstacle=obstacle
        writer.write(prediction)
        time.sleep(sleep_time)