def place_agents_along_linestring(self, world, linestring, s_start, s_end,
                                      agent_params, goal_definition):
        s = s_start
        if s_end < s_start:
            linestring.Reverse()
            s = s_end
            s_end = s_start
        agent_list = []
        while s < s_end:
            # set agent state on linestring with random velocity
            xy_point = GetPointAtS(linestring, s)
            angle = GetTangentAngleAtS(linestring, s)

            velocity = self.sample_velocity_uniform(self._other_velocity_range)
            agent_state = np.array(
                [0, xy_point.x(),
                 xy_point.y(), angle, velocity])

            agent_params = self._agent_params.copy()
            agent_params["state"] = agent_state
            agent_params["goal_definition"] = goal_definition
            agent_params["map_interface"] = world.map

            converter = ModelJsonConversion()
            bark_agent = converter.agent_from_json(agent_params,
                                                   self._params["Agent"])
            agent_list.append(bark_agent)

            # move forward on linestring based on vehicle size and max/min distance
            s += bark_agent.shape.front_dist + bark_agent.shape.rear_dist + \
                        self.sample_distance_uniform(self._vehicle_distance_range)
        return agent_list
Exemple #2
0
    def initialize_params(self, params):
        self._local_params = \
          self._params["Scenario"]["Generation"]["DeterministicScenarioGeneration"]

        self.goal_frame_center = self._local_params["goal_frame"][
            "center_pose", "Center pose of the goal frames", [0, 0, 0]]
        self.goal_frame_points = self._local_params["goal_frame"][
            "polygon_points", "Points of the goal frame polygon",
            [[-0.2, 1], [0.2, 1], [0.2, -1], [-0.2, -1], [-0.2, 1]]]
        self.goal_frame_poses = self._local_params[
            "goal_poses",
            "A list with x,y, theta specyfing the sequence of the goal frames",
            [[5, 10, 3.14 / 2 + 0.01], [10, 15, 3.14 /
                                        4], [20, 10, 3.14 /
                                             2], [15, 2, 3.14 / 2 - 0.7]]]

        json_converter = ModelJsonConversion()
        _agent_params = json_converter.agent_to_json(
            self.default_drone_model())
        if not isinstance(_agent_params, dict):
            _agent_params = _agent_params.ConvertToDict()

        self.drone_params = self._local_params[
            "drones", "list of dictionaries with drone definitions",
            [{
                "drone_model": _agent_params
            }]]
        self.ego_agent_id = self._local_params["ego_agent_id",
                                               "ID of the ego-agent", 0]
Exemple #3
0
  def initialize_params(self, params):
    self._local_params = \
      self._params["Scenario"]["Generation"]["DeterministicDroneChallengeGeneration"]

    self.goal_frame_center = self._local_params["goal_frame"][
      "center_pose", "Center pose of the goal frames",
      [1, 0, 0]]
    self.goal_frame_points = self._local_params["goal_frame"]["polygon_points",
      "Points of the goal frame polygon",
      [[0., 0.],
       [2., 0.],
       [2., 0.5],
       [0., 0.5],
       [0., 0.]]]
    self.goal_frame_poses = self._local_params["goal_poses",
      "A list with x,y, theta specyfing the sequence of the goal frames",
      [[5, 10, -0.3],
      [10,15, -1.2],
      [20,10, -2.9],
      [15,2, -3.9]]]

    self._map_file_name = self._local_params["MapFilename",
     "Path to the open drive map", 
     "modules/runtime/tests/data/Crossing8Course.xodr"]
    self._json_converter = ModelJsonConversion()
Exemple #4
0
    def initialize_params(self, params):
        self._local_params = \
          self._params["Scenario"]["Generation"]["DeterministicScenarioGeneration"]

        self._map_file_name = self._local_params[
            "MapFilename", "Path to the open drive map",
            "modules/runtime/tests/data/Crossing8Course.xodr"]
        self._json_converter = ModelJsonConversion()
 def initialize_params(self, params):
     params_temp = \
       self._params["Scenario"]["Generation"]["UniformVehicleDistribution"]
     self._random_seed = 1000  # since ScenarioGeneration UniformVehicleDistribution
     # will soon be deprecated we introduce this hack
     self._map_file_name = params_temp[
         "MapFilename", "Path to the open drive map",
         "modules/runtime/tests/data/city_highway_straight.xodr", ]
     self._ego_goal_end = params_temp[
         "EgoGoalEnd", "The center of the ego agent's goal region polygon",
         [5117, 5200]]
     self._ego_goal_start = params_temp[
         "EgoGoalStart", "The coordinates of the start of the ego goal,\
        if empty only ego goal end is used as center of polygon ", []]
     self._ego_goal_state_limits = params_temp[
         "EgoGoalStateLimits",
         "x,y and theta limits around center line of lane between start and end applied to both lateral sides \
    (only valid if start and end goal of ego are given)", [0.1, 0, 0.08]]
     self._ego_route = params_temp[
         "EgoRoute",
         "A list of two points defining start and end point of initial ego driving corridor. \
        If empty, then one of the other agents is selected as ego agents.",
         [[5117.5, 5100], [5117.5, 5200]]]
     self._others_source = params_temp[
         "OthersSource",
         "A list of points around which other vehicles spawn. \
     Points should be on different lanes. XodrLanes must be near these points \
   (<0.5m) Provide a list of lists with x,y-coordinates",
         [[5114.626, 5061.8305]]]
     self._others_sink = params_temp[
         "OthersSink",
         "A list of points defining end of other vehicles routes.\
     Points should be on different lanes and match the order of the\
     source points. XodrLanes must be near these points (<0.5m) \
     Provide a list of lists with x,y-coordinates", [[5114.626, 5193.1725]]]
     assert len(self._others_sink) == len(self._others_source)
     self._vehicle_distance_range = params_temp["VehicleDistanceRange",
       "Distance range between vehicles in meter given as tuple from which" + \
       "distances are sampled uniformly",
       (10, 20)]
     self._other_velocity_range = params_temp["OtherVehicleVelocityRange",
       "Lower and upper bound of velocity in km/h given as tuple from which" + \
       " velocities are sampled uniformly",
       (20,30)]
     self._ego_velocity_range = params_temp["EgoVehicleVelocityRange",
       "Lower and upper bound of velocity in km/h given as tuple from which" + \
       " velocities are sampled uniformly",
       (20,30)]
     json_converter = ModelJsonConversion()
     self._agent_params = params_temp[
         "VehicleModel", "How to model the other agents",
         json_converter.agent_to_json(self.default_agent_model())]
     if not isinstance(self._agent_params, dict):
         self._agent_params = self._agent_params.ConvertToDict()
     np.random.seed(self._random_seed)
Exemple #6
0
  def create_single_scenario(self):
    scenario = Scenario(map_file_name=None,
                        json_params=self._params.convert_to_dict())
    scenario._agent_list = []
    for agent_json in self.drone_params:
      agent_json["drone_model"]["map_interface"] = None
      agent_json["drone_model"]["goal_definition"] = self._build_sequential_goal_definition()
      json_converter = ModelJsonConversion()
      agent = json_converter.agent_from_json(agent_json["drone_model"],
                                                   param_server=self._local_params)
      agent.SetAgentId(agent_json["drone_model"]["id"])
      scenario._agent_list.append(agent)

    scenario._eval_agent_ids = [self._local_params["EgoAgentId",
                                "ID of the ego-agent",
                                0]]
    return scenario
Exemple #7
0
def agent_from_trackfile(track_params, param_server, agent_id):
    fname = track_params["filename"]
    track_id = track_params["track_id"]
    track = track_from_trackfile(fname, track_id)
    start = track_params["start_offset",
                         "The timestamp in ms when to start the trajectory",
                         None]
    end = track_params["end_offset",
                       "The timestamp in ms when to end the trajectory", None]
    behavior_model = track_params["behavior_model"]
    if start is None:
        start = track.time_stamp_ms_first
    if end is None:
        end = track.time_stamp_ms_last
    model_converter = ModelJsonConversion()
    if behavior_model is None:
        # each agent need's its own param server
        behavior = behavior_from_track(
            track, param_server.AddChild("agent{}".format(agent_id)), start,
            end)
    else:
        behavior = model_converter.convert_model(behavior_model, param_server)
    bark_agent = Agent(
        init_state_from_track(track, start), behavior,
        model_converter.convert_model(track_params["dynamic_model"],
                                      param_server),
        model_converter.convert_model(track_params["execution_model"],
                                      param_server),
        shape_from_track(
            track, param_server["DynamicModel"]
            ["wheel_base", "Distance between front and rear wheel center",
             2.7]), param_server.AddChild("agent{}".format(agent_id)),
        goal_definition_from_track(track, end), track_params["map_interface"])
    # set agent id from track
    bark_agent.SetAgentId(track_id)
    return bark_agent
    def create_single_scenario(self):
        scenario = Scenario(map_file_name=self._map_file_name,
                            json_params=self._params.ConvertToDict())
        world = scenario.get_world_state()
        agent_list = []
        # OTHER AGENTS
        for idx, source in enumerate(self._others_source):
            connecting_center_line, s_start, s_end = \
              self.center_line_between_source_and_sink(world.map,
                                                       source,
                                                       self._others_sink[idx])
            goal_polygon = Polygon2d([0, 0, 0], [
                Point2d(-1.5, 0),
                Point2d(-1.5, 8),
                Point2d(1.5, 8),
                Point2d(1.5, 0)
            ])
            goal_polygon = goal_polygon.Translate(
                Point2d(self._others_sink[idx][0], self._others_sink[idx][1]))
            goal_definition = GoalDefinitionPolygon(goal_polygon)
            agent_list.extend(
                self.place_agents_along_linestring(world,
                                                   connecting_center_line,
                                                   s_start, s_end,
                                                   self._agent_params,
                                                   goal_definition))

        description = self._params.ConvertToDict()
        description["ScenarioGenerator"] = "UniformVehicleDistribution"

        # EGO AGENT
        ego_agent = None
        if len(self._ego_route) == 0:
            # take agent in the middle of list
            num_agents = len(agent_list)
            ego_agent = agent_list[math.floor(num_agents / 4)]
        else:
            connecting_center_line, s_start, s_end  = \
            self.center_line_between_source_and_sink(world.map,
                                                     self._ego_route[0],
                                                     self._ego_route[1])

            sego = self.sample_srange_uniform([s_start, s_end])
            xy_point = GetPointAtS(connecting_center_line, sego)
            angle = GetTangentAngleAtS(connecting_center_line, sego)
            velocity = self.sample_velocity_uniform(self._ego_velocity_range)
            agent_state = np.array(
                [0, xy_point.x(),
                 xy_point.y(), angle, velocity])

            agent_params = self._agent_params.copy()
            agent_params["state"] = agent_state
            # goal for driving corridor generation
            goal_polygon = Polygon2d([0, 0, 0], [
                Point2d(-1.5, 0),
                Point2d(-1.5, 8),
                Point2d(1.5, 8),
                Point2d(1.5, 0)
            ])
            goal_polygon = goal_polygon.Translate(
                Point2d(self._ego_route[1][0], self._ego_route[1][1]))
            goal_definition = GoalDefinitionPolygon(goal_polygon)
            agent_params["goal_definition"] = goal_definition
            agent_params["map_interface"] = world.map

            converter = ModelJsonConversion()
            ego_agent = converter.agent_from_json(agent_params,
                                                  self._params["Agent"])
            # TODO(@bernhard): ensure that ego agent not collides with others

        agent_list.append(ego_agent)

        # EGO Agent Goal Definition
        if len(self._ego_goal_start) == 0:
            if len(self._ego_route) == 0:
                # ego agent is one of the random agents, so the goal definition is
                # already set
                pass
            else:
                goal_polygon = Polygon2d([0, 0, 0], [
                    Point2d(-1.5, 0),
                    Point2d(-1.5, 8),
                    Point2d(1.5, 8),
                    Point2d(1.5, 0)
                ])
                goal_polygon = goal_polygon.Translate(
                    Point2d(self._ego_goal_end[0], self._ego_goal_end[1]))
                ego_agent.goal_definition = GoalDefinitionPolygon(goal_polygon)
        else:
            connecting_center_line, s_start, s_end = \
            self.center_line_between_source_and_sink(world.map,
                                                     self._ego_goal_start,
                                                     self._ego_goal_end)

            goal_center_line = GetLineFromSInterval(connecting_center_line,
                                                    s_start, s_end)

            # build polygon representing state limits
            lims = self._ego_goal_state_limits
            goal_limits_left = goal_center_line.Translate(
                Point2d(-lims[0], -lims[1]))
            goal_limits_right = goal_center_line.Translate(
                Point2d(lims[0], lims[1]))
            goal_limits_right.Reverse()
            goal_limits_left.AppendLinestring(goal_limits_right)
            polygon = Polygon2d([0, 0, 0], goal_limits_left)

            ego_agent.goal_definition = GoalDefinitionStateLimits(
                polygon, (1.57 - 0.08, 1.57 + 0.08))

        # only one agent is ego in the middle of all other agents
        scenario._agent_list = agent_list
        scenario._eval_agent_ids = [ego_agent.id]
        return scenario
Exemple #9
0
class DeterministicDroneChallengeGeneration(ScenarioGeneration):
    def __init__(self, num_scenarios, params=None, random_seed=None):
        super(DeterministicDroneChallengeGeneration,
              self).__init__(params, num_scenarios)
        self.initialize_params(params)

    def initialize_params(self, params):
        self._local_params = \
          self._params["Scenario"]["Generation"]["DeterministicDroneChallengeGeneration"]

        self.goal_frame_center = self._local_params["goal_frame"][
            "center_pose", "Center pose of the goal frames", [1, 0, 0]]
        self.goal_frame_points = self._local_params["goal_frame"][
            "polygon_points", "Points of the goal frame polygon",
            [[0., 0.], [2., 0.], [2., 0.5], [0., 0.5], [0., 0.]]]
        self.goal_frame_poses = self._local_params[
            "goal_poses",
            "A list with x,y, theta specyfing the sequence of the goal frames",
            [[5, 10, -0.3], [10, 15, -1.2], [20, 10, -2.9], [15, 2, -3.9]]]

        self._map_file_name = self._local_params[
            "MapFilename", "Path to the open drive map",
            "modules/runtime/tests/data/Crossing8Course.xodr"]
        self._json_converter = ModelJsonConversion()

    def create_scenarios(self, params, num_scenarios, random_seed):
        """ 
        see baseclass
    """
        scenario_list = []
        for scenario_idx in range(0, num_scenarios):
            scenario = self.create_single_scenario()
            scenario_list.append(scenario)
        return scenario_list

    def _build_sequential_goal_definition(self):
        goal_list = []
        for goal_pose in self.goal_frame_poses:
            goal_polygon = Polygon2d(self.goal_frame_center,
                                     np.array(self.goal_frame_points))
            goal_polygon = goal_polygon.Transform(goal_pose)
            goal_definition = GoalDefinitionPolygon(goal_polygon)
            goal_list.append(goal_definition)

        return GoalDefinitionSequential(goal_list)

    def create_single_scenario(self):
        scenario = Scenario(map_file_name=self._map_file_name,
                            json_params=self._params.ConvertToDict())
        scenario._map_interface = None
        world = scenario.get_world_state()
        agent_list = []
        scenario._agent_list = []
        for agent_json_ in self._local_params["Agents"]:
            agent_json = agent_json_["VehicleModel"].copy()
            agent_json["map_interface"] = world.map
            goal_polygon = Polygon2d([0, 0, 0],
                                     np.array(
                                         agent_json["goal"]["polygon_points"]))
            goal_polygon = goal_polygon.Translate(
                Point2d(agent_json["goal"]["center_pose"][0],
                        agent_json["goal"]["center_pose"][1]))

            agent_json[
                "goal_definition"] = self._build_sequential_goal_definition()
            agent_state = np.array(agent_json["state"])
            if len(np.shape(agent_state)) > 1:
                agent_state = np.random.uniform(low=agent_state[:, 0],
                                                high=agent_state[:, 1])
            agent_json["state"] = agent_state.tolist()
            agent = self._json_converter.agent_from_json(
                agent_json, param_server=self._local_params)
            agent.SetAgentId(agent_json["id"])
            scenario._agent_list.append(agent)
        scenario._eval_agent_ids = [
            self._local_params["EgoAgentId", "ID of the ego-agent", 0]
        ]
        return scenario
Exemple #10
0
class DeterministicScenarioGeneration(ScenarioGeneration):
    def __init__(self, num_scenarios, params=None, random_seed=None):
        super(DeterministicScenarioGeneration,
              self).__init__(params, num_scenarios)
        self.initialize_params(params)

    def initialize_params(self, params):
        self._local_params = \
          self._params["Scenario"]["Generation"]["DeterministicScenarioGeneration"]

        self._map_file_name = self._local_params[
            "MapFilename", "Path to the open drive map",
            "modules/runtime/tests/data/Crossing8Course.xodr"]
        self._json_converter = ModelJsonConversion()

    def create_scenarios(self, params, num_scenarios):
        """ 
        see baseclass
    """
        scenario_list = []
        for scenario_idx in range(0, num_scenarios):
            scenario = self.create_single_scenario()
            scenario_list.append(scenario)
        return scenario_list

    def create_single_scenario(self):
        scenario = Scenario(map_file_name=self._map_file_name,
                            json_params=self._params.ConvertToDict())
        world = scenario.get_world_state()
        agent_list = []
        scenario._agent_list = []
        for agent_json_ in self._local_params["Agents"]:
            agent_json = agent_json_["VehicleModel"].copy()
            agent_json["map_interface"] = world.map
            goal_polygon = Polygon2d([0, 0, 0],
                                     np.array(
                                         agent_json["goal"]["polygon_points"]))
            goal_polygon = goal_polygon.Translate(
                Point2d(agent_json["goal"]["center_pose"][0],
                        agent_json["goal"]["center_pose"][1]))

            sequential_goals = []
            goal = GoalDefinitionPolygon(goal_polygon)
            if "goal_type" in agent_json["goal"]:
                goal_type = agent_json["goal"]["goal_type"]
                if goal_type == "GoalDefinitionStateLimits":
                    goal = GoalDefinitionStateLimits(goal_polygon,
                                                     (1.49, 1.65))

            # state_limit_goal = GoalDefinitionStateLimits(goal_polygon, (1.49, 1.65))
            for _ in range(self._local_params["goal"]["num_reached", "num",
                                                      5]):
                sequential_goals.append(goal)
            sequential_goal = GoalDefinitionSequential(sequential_goals)
            agent_json["goal_definition"] = sequential_goal

            agent_state = np.array(agent_json["state"])
            if len(np.shape(agent_state)) > 1:
                agent_state = np.random.uniform(low=agent_state[:, 0],
                                                high=agent_state[:, 1])
            agent_json["state"] = agent_state.tolist()
            agent = self._json_converter.agent_from_json(
                agent_json, param_server=self._params)
            agent.SetAgentId(agent_json["id"])
            scenario._agent_list.append(agent)

        # TODO(@hart): this could be mult. agents
        scenario._eval_agent_ids = self._local_params[
            "controlled_ids", "IDs of agents to be controlled. ", [0]]
        return scenario