Exemple #1
0
def ce_gradient_pair_scatter(
    model, data_loader, d1=0, d2=1, max_num_examples=2000, plt=None
):
    if plt is None:
        plt = matplotlib.pyplot
    model.eval()

    pred = utils.apply_on_dataset(
        model=model,
        dataset=data_loader.dataset,
        output_keys_regexp="pred",
        max_num_examples=max_num_examples,
        description="grad-pair-scatter:pred",
    )["pred"]
    n_examples = min(len(data_loader.dataset), max_num_examples)
    labels = []
    for idx in range(n_examples):
        labels.append(data_loader.dataset[idx][1])
    labels = torch.tensor(labels, dtype=torch.long)
    labels = F.one_hot(labels, num_classes=model.num_classes).float()
    labels = utils.to_cpu(labels)
    grad_wrt_logits = torch.softmax(pred, dim=-1) - labels
    grad_wrt_logits = utils.to_numpy(grad_wrt_logits)

    fig, ax = plt.subplots(1, figsize=(5, 5))
    plt.scatter(grad_wrt_logits[:, d1], grad_wrt_logits[:, d2])
    ax.set_xlabel(str(d1))
    ax.set_ylabel(str(d2))
    # L = np.percentile(grad_wrt_logits, q=5, axis=0)
    # R = np.percentile(grad_wrt_logits, q=95, axis=0)
    # ax.set_xlim(L[d1], R[d1])
    # ax.set_ylim(L[d2], R[d2])
    ax.set_title("Two coordinates of grad wrt to logits")
    return fig, plt
Exemple #2
0
def ce_gradient_norm_histogram(
    model, data_loader, tensorboard, epoch, name, max_num_examples=5000
):
    model.eval()

    pred = utils.apply_on_dataset(
        model=model,
        dataset=data_loader.dataset,
        output_keys_regexp="pred",
        description="grad-histogram:pred",
        max_num_examples=max_num_examples,
    )["pred"]
    n_examples = min(len(data_loader.dataset), max_num_examples)
    labels = []
    for idx in range(n_examples):
        labels.append(data_loader.dataset[idx][1])
    labels = torch.tensor(labels, dtype=torch.long)
    labels = F.one_hot(labels, num_classes=model.num_classes).float()
    labels = utils.to_cpu(labels)

    grad_wrt_logits = torch.softmax(pred, dim=-1) - labels
    grad_norms = torch.sum(grad_wrt_logits ** 2, dim=-1)
    grad_norms = utils.to_numpy(grad_norms)

    try:
        tensorboard.add_histogram(tag=name, values=grad_norms, global_step=epoch)
    except ValueError as e:
        print("Tensorboard histogram error: {}".format(e))
def plot_predictions(model, data_loader, key, plt=None):
    if plt is None:
        plt = matplotlib.pyplot
    model.eval()

    n_examples = 10
    pred = utils.apply_on_dataset(
        model=model,
        dataset=data_loader.dataset,
        output_keys_regexp=key,
        max_num_examples=n_examples,
        description='plot_predictions:{}'.format(key))[key]
    probs = torch.softmax(pred, dim=1)
    probs = utils.to_numpy(probs)

    data = [data_loader.dataset[i][0] for i in range(n_examples)]
    labels = [data_loader.dataset[i][1] for i in range(n_examples)]
    samples = torch.stack(data, dim=0)
    samples = revert_normalization(samples, data_loader.dataset)
    samples = utils.to_numpy(samples)

    fig, ax = plt.subplots(nrows=n_examples,
                           ncols=2,
                           figsize=(2 * 2, 2 * n_examples))
    for i in range(n_examples):
        ax[i][0].imshow(get_image(samples[i]), vmin=0, vmax=1)
        ax[i][0].set_axis_off()
        ax[i][0].set_title('labels as {}'.format(labels[i]))

        ax[i][1].bar(range(model.num_classes), probs[i])
        ax[i][1].set_xticks(range(model.num_classes))

    return fig, plt
def pred_gradient_pair_scatter(model,
                               data_loader,
                               d1=0,
                               d2=1,
                               max_num_examples=2000,
                               plt=None):
    if plt is None:
        plt = matplotlib.pyplot
    model.eval()
    grad_pred = utils.apply_on_dataset(
        model=model,
        dataset=data_loader.dataset,
        output_keys_regexp='grad_pred',
        max_num_examples=max_num_examples,
        description='grad-pair-scatter:grad_pred')['grad_pred']
    grad_pred = utils.to_numpy(grad_pred)
    fig, ax = plt.subplots(1, figsize=(5, 5))
    plt.scatter(grad_pred[:, d1], grad_pred[:, d2])
    ax.set_xlabel(str(d1))
    ax.set_ylabel(str(d2))
    # L = np.percentile(grad_pred, q=5, axis=0)
    # R = np.percentile(grad_pred, q=95, axis=0)
    # ax.set_xlim(L[d1], R[d1])
    # ax.set_ylim(L[d2], R[d2])
    ax.set_title('Two coordinates of grad wrt to logits')
    return fig, plt
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--device', '-d', default='cuda')

    parser.add_argument('--batch_size', '-b', type=int, default=256)
    parser.add_argument('--seed', type=int, default=42)

    parser.add_argument('--dataset', '-D', type=str, default='mnist',
                        choices=['mnist', 'cifar10', 'cifar100', 'clothing1m', 'imagenet'])
    parser.add_argument('--data_augmentation', '-A', action='store_true', dest='data_augmentation')
    parser.set_defaults(data_augmentation=False)
    parser.add_argument('--num_train_examples', type=int, default=None)
    parser.add_argument('--label_noise_level', '-n', type=float, default=0.0)
    parser.add_argument('--label_noise_type', type=str, default='flip',
                        choices=['flip', 'error', 'cifar10_custom'])
    parser.add_argument('--transform_function', type=str, default=None,
                        choices=[None, 'remove_random_chunks'])
    parser.add_argument('--clean_validation', dest='clean_validation', action='store_true')
    parser.set_defaults(clean_validation=False)
    parser.add_argument('--remove_prob', type=float, default=0.5)

    parser.add_argument('--load_from', type=str, default=None, required=True)
    parser.add_argument('--output_dir', '-o', type=str, default=None)

    args = parser.parse_args()
    print(args)

    # Load data
    _, _, test_loader = datasets.load_data_from_arguments(args)

    print(f"Testing the model saved at {args.load_from}")
    model = utils.load(args.load_from, device=args.device)
    ret = utils.apply_on_dataset(model, test_loader.dataset, batch_size=args.batch_size,
                                 output_keys_regexp='pred|label', description='Testing')
    pred = ret['pred']
    labels = ret['label']
    if args.output_dir is not None:
        with open(os.path.join(args.output_dir, 'test_predictions.pkl'), 'wb') as f:
            pickle.dump({'pred': pred, 'labels': labels}, f)

    accuracy = torch.mean((pred.argmax(dim=1) == labels).float())
    print(accuracy)
    if args.output_dir is not None:
        with open(os.path.join(args.output_dir, 'test_accuracy.txt'), 'w') as f:
            f.write("{}\n".format(accuracy))
Exemple #6
0
def pred_gradient_norm_histogram(
    model, data_loader, tensorboard, epoch, name, max_num_examples=5000
):
    model.eval()
    grad_pred = utils.apply_on_dataset(
        model=model,
        dataset=data_loader.dataset,
        output_keys_regexp="grad_pred",
        description="grad-histogram:grad_pred",
        max_num_examples=max_num_examples,
    )["grad_pred"]
    grad_norms = torch.sum(grad_pred ** 2, dim=-1)
    grad_norms = utils.to_numpy(grad_norms)

    try:
        tensorboard.add_histogram(tag=name, values=grad_norms, global_step=epoch)
    except ValueError as e:
        print("Tensorboard histogram error: {}".format(e))
def estimate_transition(load_from, data_loader, device="cpu", batch_size=256):
    """ Estimates the label noise matrix. The code is adapted form the original implementation.
    Source: https://github.com/giorgiop/loss-correction/.
    """
    assert load_from is not None
    model = utils.load(load_from, device=device)
    pred = utils.apply_on_dataset(
        model=model,
        dataset=data_loader.dataset,
        batch_size=batch_size,
        cpu=True,
        description="Estimating transition matrix",
        output_keys_regexp="pred",
    )["pred"]
    pred = torch.softmax(pred, dim=1)
    pred = utils.to_numpy(pred)

    c = model.num_classes
    T = np.zeros((c, c))
    filter_outlier = True

    # find a 'perfect example' for each class
    for i in range(c):
        if not filter_outlier:
            idx_best = np.argmax(pred[:, i])
        else:
            thresh = np.percentile(pred[:, i], 97, interpolation="higher")
            robust_eta = pred[:, i]
            robust_eta[robust_eta >= thresh] = 0.0
            idx_best = np.argmax(robust_eta)

        for j in range(c):
            T[i, j] = pred[idx_best, j]

    # row normalize
    row_sums = T.sum(axis=1, keepdims=True)
    T /= row_sums

    T = torch.tensor(T, dtype=torch.float).to(device)
    print(T)

    return T
Exemple #8
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--config', '-c', type=str, required=True)
    parser.add_argument('--device', '-d', default='cuda')

    parser.add_argument('--batch_size', '-b', type=int, default=256)
    parser.add_argument('--epochs', '-e', type=int, default=400)
    parser.add_argument('--stopping_param', type=int, default=50)
    parser.add_argument('--save_iter', '-s', type=int, default=10)
    parser.add_argument('--vis_iter', '-v', type=int, default=10)
    parser.add_argument('--log_dir', '-l', type=str, default=None)
    parser.add_argument('--seed', type=int, default=42)

    parser.add_argument(
        '--dataset',
        '-D',
        type=str,
        default='mnist',
        choices=['mnist', 'cifar10', 'cifar100', 'clothing1m', 'imagenet'])
    parser.add_argument('--data_augmentation',
                        '-A',
                        action='store_true',
                        dest='data_augmentation')
    parser.set_defaults(data_augmentation=False)
    parser.add_argument('--num_train_examples', type=int, default=None)
    parser.add_argument('--label_noise_level', '-n', type=float, default=0.0)
    parser.add_argument('--label_noise_type',
                        type=str,
                        default='error',
                        choices=['error', 'cifar10_custom'])
    parser.add_argument('--transform_function',
                        type=str,
                        default=None,
                        choices=[None, 'remove_random_chunks'])
    parser.add_argument('--clean_validation',
                        dest='clean_validation',
                        action='store_true')
    parser.set_defaults(clean_validation=False)
    parser.add_argument('--remove_prob', type=float, default=0.5)

    parser.add_argument('--model_class',
                        '-m',
                        type=str,
                        default='StandardClassifier')
    parser.add_argument(
        '--loss_function',
        type=str,
        default='ce',
        choices=['ce', 'mse', 'mae', 'gce', 'dmi', 'fw', 'none'])
    parser.add_argument('--loss_function_param', type=float, default=1.0)
    parser.add_argument('--load_from', type=str, default=None)
    parser.add_argument('--grad_weight_decay', '-L', type=float, default=0.0)
    parser.add_argument('--grad_l1_penalty', '-S', type=float, default=0.0)
    parser.add_argument('--lamb', type=float, default=1.0)
    parser.add_argument('--pretrained_arg', '-r', type=str, default=None)
    parser.add_argument('--sample_from_q',
                        action='store_true',
                        dest='sample_from_q')
    parser.set_defaults(sample_from_q=False)
    parser.add_argument('--q_dist',
                        type=str,
                        default='Gaussian',
                        choices=['Gaussian', 'Laplace', 'dot'])
    parser.add_argument('--no-detach', dest='detach', action='store_false')
    parser.set_defaults(detach=True)
    parser.add_argument('--warm_up',
                        type=int,
                        default=0,
                        help='Number of epochs to skip before '
                        'starting to train using predicted gradients')
    parser.add_argument('--weight_decay', type=float, default=0.0)

    parser.add_argument(
        '--add_noise',
        action='store_true',
        dest='add_noise',
        help='add noise to the gradients of a standard classifier.')
    parser.set_defaults(add_noise=False)
    parser.add_argument('--noise_type',
                        type=str,
                        default='Gaussian',
                        choices=['Gaussian', 'Laplace'])
    parser.add_argument('--noise_std', type=float, default=0.0)

    parser.add_argument('--lr', type=float, default=1e-3, help='Learning rate')
    args = parser.parse_args()
    print(args)

    # Load data
    train_loader, val_loader, test_loader = datasets.load_data_from_arguments(
        args)

    # Options
    optimization_args = {
        'optimizer': {
            'name': 'adam',
            'lr': args.lr,
            'weight_decay': args.weight_decay
        }
    }

    # optimization_args = {
    #     'optimizer': {
    #         'name': 'sgd',
    #         'lr': 1e-3,
    #     },
    #     'scheduler': {
    #         'step_size': 15,
    #         'gamma': 1.25
    #     }
    # }

    with open(args.config, 'r') as f:
        architecture_args = json.load(f)

    model_class = getattr(methods, args.model_class)

    model = model_class(input_shape=train_loader.dataset[0][0].shape,
                        architecture_args=architecture_args,
                        pretrained_arg=args.pretrained_arg,
                        device=args.device,
                        grad_weight_decay=args.grad_weight_decay,
                        grad_l1_penalty=args.grad_l1_penalty,
                        lamb=args.lamb,
                        sample_from_q=args.sample_from_q,
                        q_dist=args.q_dist,
                        load_from=args.load_from,
                        loss_function=args.loss_function,
                        loss_function_param=args.loss_function_param,
                        add_noise=args.add_noise,
                        noise_type=args.noise_type,
                        noise_std=args.noise_std,
                        detach=args.detach,
                        warm_up=args.warm_up)

    metrics_list = []
    if args.dataset == 'imagenet':
        metrics_list.append(metrics.TopKAccuracy(k=5, output_key='pred'))

    training.train(model=model,
                   train_loader=train_loader,
                   val_loader=val_loader,
                   epochs=args.epochs,
                   save_iter=args.save_iter,
                   vis_iter=args.vis_iter,
                   optimization_args=optimization_args,
                   log_dir=args.log_dir,
                   args_to_log=args,
                   stopping_param=args.stopping_param,
                   metrics=metrics_list)

    # if training finishes successfully, compute the test score
    print("Testing the best validation model...")
    model = utils.load(os.path.join(args.log_dir, 'checkpoints',
                                    'best_val.mdl'),
                       device=args.device)
    pred = utils.apply_on_dataset(model,
                                  test_loader.dataset,
                                  batch_size=args.batch_size,
                                  output_keys_regexp='pred',
                                  description='Testing')['pred']
    labels = [p[1] for p in test_loader.dataset]
    labels = torch.tensor(labels, dtype=torch.long)
    labels = utils.to_cpu(labels)
    with open(os.path.join(args.log_dir, 'test_predictions.pkl'), 'wb') as f:
        pickle.dump({'pred': pred, 'labels': labels}, f)

    accuracy = torch.mean((pred.argmax(dim=1) == labels).float())
    with open(os.path.join(args.log_dir, 'test_accuracy.txt'), 'w') as f:
        f.write("{}\n".format(accuracy))
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument("--device", "-d", default="cuda")

    parser.add_argument("--batch_size", "-b", type=int, default=256)
    parser.add_argument("--seed", type=int, default=42)

    parser.add_argument(
        "--dataset",
        "-D",
        type=str,
        default="mnist",
        choices=["mnist", "cifar10", "cifar100", "clothing1m", "imagenet"],
    )
    parser.add_argument(
        "--data_augmentation", "-A", action="store_true", dest="data_augmentation"
    )
    parser.set_defaults(data_augmentation=False)
    parser.add_argument("--num_train_examples", type=int, default=None)
    parser.add_argument("--label_noise_level", "-n", type=float, default=0.0)
    parser.add_argument(
        "--label_noise_type",
        type=str,
        default="flip",
        choices=["flip", "error", "cifar10_custom"],
    )
    parser.add_argument(
        "--transform_function",
        type=str,
        default=None,
        choices=[None, "remove_random_chunks"],
    )
    parser.add_argument(
        "--clean_validation", dest="clean_validation", action="store_true"
    )
    parser.set_defaults(clean_validation=False)
    parser.add_argument("--remove_prob", type=float, default=0.5)

    parser.add_argument("--load_from", type=str, default=None, required=True)
    parser.add_argument("--output_dir", "-o", type=str, default=None)

    args = parser.parse_args()
    print(args)

    # Load data
    _, _, test_loader = datasets.load_data_from_arguments(args)

    print(f"Testing the model saved at {args.load_from}")
    model = utils.load(args.load_from, device=args.device)
    ret = utils.apply_on_dataset(
        model,
        test_loader.dataset,
        batch_size=args.batch_size,
        output_keys_regexp="pred|label",
        description="Testing",
    )
    pred = ret["pred"]
    labels = ret["label"]
    if args.output_dir is not None:
        with open(os.path.join(args.output_dir, "test_predictions.pkl"), "wb") as f:
            pickle.dump({"pred": pred, "labels": labels}, f)

    accuracy = torch.mean((pred.argmax(dim=1) == labels).float())
    print(accuracy)
    if args.output_dir is not None:
        with open(os.path.join(args.output_dir, "test_accuracy.txt"), "w") as f:
            f.write("{}\n".format(accuracy))
Exemple #10
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument("--config", "-c", type=str, required=True)
    parser.add_argument("--device", "-d", default="cuda")

    parser.add_argument("--batch_size", "-b", type=int, default=128)
    parser.add_argument("--epochs", "-e", type=int, default=4000)
    parser.add_argument("--stopping_param", type=int, default=2**30)
    parser.add_argument("--save_iter", "-s", type=int, default=100)
    parser.add_argument("--vis_iter", "-v", type=int, default=10)
    parser.add_argument("--log_dir", "-l", type=str, default=None)
    parser.add_argument("--seed", type=int, default=42)

    parser.add_argument(
        "--dataset",
        "-D",
        type=str,
        default="cifar10",
        choices=["mnist", "cifar10", "cifar100", "clothing1m", "imagenet"],
    )
    parser.add_argument("--data_augmentation",
                        "-A",
                        action="store_true",
                        dest="data_augmentation")
    parser.set_defaults(data_augmentation=False)
    parser.add_argument("--num_train_examples", type=int, default=None)
    parser.add_argument("--label_noise_level", "-n", type=float, default=0.0)
    parser.add_argument(
        "--label_noise_type",
        type=str,
        default="error",
        choices=["error", "cifar10_custom"],
    )
    parser.add_argument(
        "--transform_function",
        type=str,
        default=None,
        choices=[None, "remove_random_chunks"],
    )
    parser.add_argument("--clean_validation",
                        dest="clean_validation",
                        action="store_true")
    parser.set_defaults(clean_validation=False)
    parser.add_argument("--remove_prob", type=float, default=0.5)

    parser.add_argument("--model_class",
                        "-m",
                        type=str,
                        default="StandardClassifier")
    parser.add_argument("--load_from", type=str, default=None)
    parser.add_argument("--grad_weight_decay", "-L", type=float, default=0.0)
    parser.add_argument("--lamb", type=float, default=1.0)
    parser.add_argument("--pretrained_arg", "-r", type=str, default=None)
    parser.add_argument("--sample_from_q",
                        action="store_true",
                        dest="sample_from_q")
    parser.set_defaults(sample_from_q=False)
    parser.add_argument("--q_dist",
                        type=str,
                        default="Gaussian",
                        choices=["Gaussian", "Laplace", "dot"])
    parser.add_argument("--weight_decay", type=float, default=0.0)

    parser.add_argument("--lr", type=float, default=1e-4, help="Learning rate")

    parser.add_argument(
        "--k",
        "-k",
        type=int,
        required=False,
        default=10,
        help="width parameter of ResNet18-k",
    )
    parser.add_argument("--exclude_percent", type=float, default=0.0)
    args = parser.parse_args()
    print(args)

    # Load data
    train_loader, val_loader, test_loader = datasets.load_data_from_arguments(
        args)

    # Options
    optimization_args = {
        "optimizer": {
            "name": "adam",
            "lr": args.lr,
            "weight_decay": args.weight_decay
        }
    }

    with open(args.config, "r") as f:
        architecture_args = json.load(f)

        # set the width parameter k
        if ("classifier" in architecture_args
                and architecture_args["classifier"].get(
                    "net", "").find("double-descent") != -1):
            architecture_args["classifier"]["k"] = args.k
        if ("q-network" in architecture_args
                and architecture_args["classifier"].get(
                    "net", "").find("double-descent") != -1):
            architecture_args["q-network"]["k"] = args.k

    model_class = getattr(methods, args.model_class)

    model = model_class(
        input_shape=train_loader.dataset[0][0].shape,
        architecture_args=architecture_args,
        pretrained_arg=args.pretrained_arg,
        device=args.device,
        grad_weight_decay=args.grad_weight_decay,
        lamb=args.lamb,
        sample_from_q=args.sample_from_q,
        q_dist=args.q_dist,
        load_from=args.load_from,
        loss_function="ce",
    )

    training.train(
        model=model,
        train_loader=train_loader,
        val_loader=val_loader,
        epochs=args.epochs,
        save_iter=args.save_iter,
        vis_iter=args.vis_iter,
        optimization_args=optimization_args,
        log_dir=args.log_dir,
        args_to_log=args,
        stopping_param=args.stopping_param,
    )

    # test the last model and best model
    models_to_test = [
        {
            "name": "best",
            "file": "best_val.mdl"
        },
        {
            "name": "final",
            "file": "final.mdl"
        },
    ]
    for spec in models_to_test:
        print("Testing the {} model...".format(spec["name"]))
        model = utils.load(os.path.join(args.log_dir, "checkpoints",
                                        spec["file"]),
                           device=args.device)
        pred = utils.apply_on_dataset(
            model,
            test_loader.dataset,
            batch_size=args.batch_size,
            output_keys_regexp="pred",
            description="Testing",
        )["pred"]
        labels = [p[1] for p in test_loader.dataset]
        labels = torch.tensor(labels, dtype=torch.long)
        labels = utils.to_cpu(labels)
        with open(
                os.path.join(args.log_dir,
                             "{}_test_predictions.pkl".format(spec["name"])),
                "wb",
        ) as f:
            pickle.dump({"pred": pred, "labels": labels}, f)

        accuracy = torch.mean((pred.argmax(dim=1) == labels).float())
        with open(
                os.path.join(args.log_dir,
                             "{}_test_accuracy.txt".format(spec["name"])),
                "w") as f:
            f.write("{}\n".format(accuracy))
Exemple #11
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument("--config", "-c", type=str, default=None)
    parser.add_argument("--device", "-d", default="cuda")

    parser.add_argument("--batch_size", "-b", type=int, default=256)
    parser.add_argument("--epochs", "-e", type=int, default=400)
    parser.add_argument("--stopping_param", type=int, default=50)
    parser.add_argument("--save_iter", "-s", type=int, default=10)
    parser.add_argument("--vis_iter", "-v", type=int, default=10)
    parser.add_argument("--log_dir", "-l", type=str, default=None)
    parser.add_argument("--seed", type=int, default=42)

    parser.add_argument(
        "--dataset",
        "-D",
        type=str,
        default="mnist",
        choices=[
            "mnist", "cifar10", "cifar100", "clothing1m", "imagenet", "cover"
        ],
    )
    # parser.add_argument("--image-root", metavar="DIR", help="path to images")
    # parser.add_argument("--label", metavar="DIR", help="path to label file")
    parser.add_argument("--data_augmentation",
                        "-A",
                        action="store_true",
                        dest="data_augmentation")
    parser.set_defaults(data_augmentation=False)
    parser.add_argument("--num_train_examples", type=int, default=None)
    parser.add_argument("--label_noise_level", "-n", type=float, default=0.0)
    parser.add_argument(
        "--label_noise_type",
        type=str,
        default="error",
        choices=["error", "cifar10_custom"],
    )
    parser.add_argument(
        "--transform_function",
        type=str,
        default=None,
        choices=[None, "remove_random_chunks"],
    )
    parser.add_argument("--clean_validation",
                        dest="clean_validation",
                        action="store_true")
    parser.set_defaults(clean_validation=False)
    parser.add_argument("--remove_prob", type=float, default=0.5)

    parser.add_argument("--model_class",
                        "-m",
                        type=str,
                        default="StandardClassifier")
    parser.add_argument(
        "--loss_function",
        type=str,
        default="ce",
        choices=["ce", "mse", "mae", "gce", "dmi", "fw", "none"],
    )
    parser.add_argument("--loss_function_param", type=float, default=1.0)
    parser.add_argument("--load_from", type=str, default=None)
    parser.add_argument("--grad_weight_decay", "-L", type=float, default=0.0)
    parser.add_argument("--grad_l1_penalty", "-S", type=float, default=0.0)
    parser.add_argument("--lamb", type=float, default=1.0)
    parser.add_argument("--pretrained_arg", "-r", type=str, default=None)
    parser.add_argument("--sample_from_q",
                        action="store_true",
                        dest="sample_from_q")
    parser.set_defaults(sample_from_q=False)
    parser.add_argument("--q_dist",
                        type=str,
                        default="Gaussian",
                        choices=["Gaussian", "Laplace", "dot"])
    parser.add_argument("--no-detach", dest="detach", action="store_false")
    parser.set_defaults(detach=True)
    parser.add_argument(
        "--warm_up",
        type=int,
        default=0,
        help="Number of epochs to skip before "
        "starting to train using predicted gradients",
    )
    parser.add_argument("--weight_decay", type=float, default=0.0)

    parser.add_argument(
        "--add_noise",
        action="store_true",
        dest="add_noise",
        help="add noise to the gradients of a standard classifier.",
    )
    parser.set_defaults(add_noise=False)
    parser.add_argument("--noise_type",
                        type=str,
                        default="Gaussian",
                        choices=["Gaussian", "Laplace"])
    parser.add_argument("--noise_std", type=float, default=0.0)

    parser.add_argument("--lr", type=float, default=1e-3, help="Learning rate")
    args = parser.parse_args()
    print(args)

    # Load data
    args.image_root = [
        "/data/chenlong.1024/5198852-tiktok-1w_images",
        "/data/chenlong.1024/5205046-tiktok-10w_images",
        "/data/chenlong.1024/5599074-tiktok-impr_cnt20_images",
        "/data/chenlong.1024/5600297-tiktok-impr_cnt10_images",
    ]
    args.label = [
        "/data/chenlong.1024/5198852-tiktok-1w.csv",
        "/data/chenlong.1024/5205046-tiktok-10w.csv",
        "/data/chenlong.1024/5599074-tiktok-impr_cnt20.csv",
        "/data/chenlong.1024/5600297-tiktok-impr_cnt10.csv",
    ]
    train_loader, val_loader, test_loader = datasets.load_data_from_arguments(
        args)

    # Options
    optimization_args = {
        "optimizer": {
            "name": "adam",
            "lr": args.lr,
            "weight_decay": args.weight_decay
        },
        "scheduler": {
            "step_size": 20,
            "gamma": 0.3
        },
    }

    # optimization_args = {
    #     'optimizer': {
    #         'name': 'sgd',
    #         'lr': 1e-3,
    #     },
    #     'scheduler': {
    #         'step_size': 15,
    #         'gamma': 1.25
    #     }
    # }

    model_class = getattr(methods, args.model_class)

    if "CoverModel" in args.model_class:
        model = model_class(
            num_classes=2,
            pretrained=True,
            device=args.device,
            grad_weight_decay=args.grad_weight_decay,
            grad_l1_penalty=args.grad_l1_penalty,
            lamb=args.lamb,
            sample_from_q=args.sample_from_q,
            q_dist=args.q_dist,
            load_from=args.load_from,
            loss_function=args.loss_function,
            loss_function_param=args.loss_function_param,
            add_noise=args.add_noise,
            noise_type=args.noise_type,
            noise_std=args.noise_std,
            detach=args.detach,
            warm_up=args.warm_up,
        )
    else:
        with open(args.config, "r") as f:
            architecture_args = json.load(f)
        model = model_class(
            input_shape=train_loader.dataset[0][0].shape,
            architecture_args=architecture_args,
            pretrained_arg=args.pretrained_arg,
            device=args.device,
            grad_weight_decay=args.grad_weight_decay,
            grad_l1_penalty=args.grad_l1_penalty,
            lamb=args.lamb,
            sample_from_q=args.sample_from_q,
            q_dist=args.q_dist,
            load_from=args.load_from,
            loss_function=args.loss_function,
            loss_function_param=args.loss_function_param,
            add_noise=args.add_noise,
            noise_type=args.noise_type,
            noise_std=args.noise_std,
            detach=args.detach,
            warm_up=args.warm_up,
        )

    metrics_list = []
    if args.dataset == "imagenet":
        metrics_list.append(metrics.TopKAccuracy(k=5, output_key="pred"))

    training.train(
        model=model,
        train_loader=train_loader,
        val_loader=val_loader,
        epochs=args.epochs,
        save_iter=args.save_iter,
        vis_iter=args.vis_iter,
        optimization_args=optimization_args,
        log_dir=args.log_dir,
        args_to_log=args,
        stopping_param=args.stopping_param,
        metrics=metrics_list,
    )

    # if training finishes successfully, compute the test score
    print("Testing the best validation model...")
    model = utils.load(os.path.join(args.log_dir, "checkpoints",
                                    "best_val.mdl"),
                       device=args.device)
    pred = utils.apply_on_dataset(
        model,
        test_loader.dataset,
        batch_size=args.batch_size,
        output_keys_regexp="pred",
        description="Testing",
    )["pred"]
    labels = [p[1] for p in test_loader.dataset]
    labels = torch.tensor(labels, dtype=torch.long)
    labels = utils.to_cpu(labels)
    with open(os.path.join(args.log_dir, "test_predictions.pkl"), "wb") as f:
        pickle.dump({"pred": pred, "labels": labels}, f)

    accuracy = torch.mean((pred.argmax(dim=1) == labels).float())
    with open(os.path.join(args.log_dir, "test_accuracy.txt"), "w") as f:
        f.write("{}\n".format(accuracy))
Exemple #12
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--config', '-c', type=str, required=True)
    parser.add_argument('--device', '-d', default='cuda')

    parser.add_argument('--batch_size', '-b', type=int, default=128)
    parser.add_argument('--epochs', '-e', type=int, default=4000)
    parser.add_argument('--stopping_param', type=int, default=2**30)
    parser.add_argument('--save_iter', '-s', type=int, default=100)
    parser.add_argument('--vis_iter', '-v', type=int, default=10)
    parser.add_argument('--log_dir', '-l', type=str, default=None)
    parser.add_argument('--seed', type=int, default=42)

    parser.add_argument(
        '--dataset',
        '-D',
        type=str,
        default='cifar10',
        choices=['mnist', 'cifar10', 'cifar100', 'clothing1m', 'imagenet'])
    parser.add_argument('--data_augmentation',
                        '-A',
                        action='store_true',
                        dest='data_augmentation')
    parser.set_defaults(data_augmentation=False)
    parser.add_argument('--num_train_examples', type=int, default=None)
    parser.add_argument('--label_noise_level', '-n', type=float, default=0.0)
    parser.add_argument('--label_noise_type',
                        type=str,
                        default='error',
                        choices=['error', 'cifar10_custom'])
    parser.add_argument('--transform_function',
                        type=str,
                        default=None,
                        choices=[None, 'remove_random_chunks'])
    parser.add_argument('--clean_validation',
                        dest='clean_validation',
                        action='store_true')
    parser.set_defaults(clean_validation=False)
    parser.add_argument('--remove_prob', type=float, default=0.5)

    parser.add_argument('--model_class',
                        '-m',
                        type=str,
                        default='StandardClassifier')
    parser.add_argument('--load_from', type=str, default=None)
    parser.add_argument('--grad_weight_decay', '-L', type=float, default=0.0)
    parser.add_argument('--lamb', type=float, default=1.0)
    parser.add_argument('--pretrained_arg', '-r', type=str, default=None)
    parser.add_argument('--sample_from_q',
                        action='store_true',
                        dest='sample_from_q')
    parser.set_defaults(sample_from_q=False)
    parser.add_argument('--q_dist',
                        type=str,
                        default='Gaussian',
                        choices=['Gaussian', 'Laplace', 'dot'])
    parser.add_argument('--weight_decay', type=float, default=0.0)

    parser.add_argument('--lr', type=float, default=1e-4, help='Learning rate')

    parser.add_argument('--k',
                        '-k',
                        type=int,
                        required=True,
                        default=10,
                        help='width parameter of ResNet18-k')
    args = parser.parse_args()
    print(args)

    # Load data
    train_loader, val_loader, test_loader = datasets.load_data_from_arguments(
        args)

    # Options
    optimization_args = {
        'optimizer': {
            'name': 'adam',
            'lr': args.lr,
            'weight_decay': args.weight_decay
        }
    }

    with open(args.config, 'r') as f:
        architecture_args = json.load(f)

        # set the width parameter k
        if ('classifier' in architecture_args
                and architecture_args['classifier'].get(
                    'net', '') == 'double-descent-cifar10-resnet18'):
            architecture_args['classifier']['k'] = args.k
        if ('q-network' in architecture_args
                and architecture_args['q-network'].get(
                    'net', '') == 'double-descent-cifar10-resnet18'):
            architecture_args['q-network']['k'] = args.k

    model_class = getattr(methods, args.model_class)

    model = model_class(input_shape=train_loader.dataset[0][0].shape,
                        architecture_args=architecture_args,
                        pretrained_arg=args.pretrained_arg,
                        device=args.device,
                        grad_weight_decay=args.grad_weight_decay,
                        lamb=args.lamb,
                        sample_from_q=args.sample_from_q,
                        q_dist=args.q_dist,
                        load_from=args.load_from,
                        loss_function='ce')

    training.train(model=model,
                   train_loader=train_loader,
                   val_loader=val_loader,
                   epochs=args.epochs,
                   save_iter=args.save_iter,
                   vis_iter=args.vis_iter,
                   optimization_args=optimization_args,
                   log_dir=args.log_dir,
                   args_to_log=args,
                   stopping_param=args.stopping_param)

    # test the last model and best model
    models_to_test = [{
        'name': 'best',
        'file': 'best_val.mdl'
    }, {
        'name': 'final',
        'file': 'final.mdl'
    }]
    for spec in models_to_test:
        print("Testing the {} model...".format(spec['name']))
        model = utils.load(os.path.join(args.log_dir, 'checkpoints',
                                        spec['file']),
                           device=args.device)
        pred = utils.apply_on_dataset(model,
                                      test_loader.dataset,
                                      batch_size=args.batch_size,
                                      output_keys_regexp='pred',
                                      description='Testing')['pred']
        labels = [p[1] for p in test_loader.dataset]
        labels = torch.tensor(labels, dtype=torch.long)
        labels = utils.to_cpu(labels)
        with open(
                os.path.join(args.log_dir,
                             '{}_test_predictions.pkl'.format(spec['name'])),
                'wb') as f:
            pickle.dump({'pred': pred, 'labels': labels}, f)

        accuracy = torch.mean((pred.argmax(dim=1) == labels).float())
        with open(
                os.path.join(args.log_dir,
                             '{}_test_accuracy.txt'.format(spec['name'])),
                'w') as f:
            f.write("{}\n".format(accuracy))