def main(argv): # init os.environ['CUDA_VISIBLE_DEVICES'] = FLAGS.gpu cfg = load_yaml(FLAGS.cfg_path) # load dataset train_dataset = load_dataset(cfg) for x, y in train_dataset: break print('x.shape:', x.shape) print('y:', y)
def main(_): # init os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' os.environ['CUDA_VISIBLE_DEVICES'] = FLAGS.gpu logger = tf.get_logger() logger.disabled = True logger.setLevel(logging.FATAL) set_memory_growth() cfg = load_yaml(FLAGS.cfg_path) # define network model = RetinaFaceModel(cfg, training=True) model.summary(line_length=80) # define prior box priors = prior_box((cfg['input_size'], cfg['input_size']), cfg['min_sizes'], cfg['steps'], cfg['clip']) # load dataset train_dataset = load_dataset(cfg, priors, shuffle=True) # define optimizer steps_per_epoch = cfg['dataset_len'] // cfg['batch_size'] learning_rate = MultiStepWarmUpLR( initial_learning_rate=cfg['init_lr'], lr_steps=[e * steps_per_epoch for e in cfg['lr_decay_epoch']], lr_rate=cfg['lr_rate'], warmup_steps=cfg['warmup_epoch'] * steps_per_epoch, min_lr=cfg['min_lr']) optimizer = tf.keras.optimizers.SGD(learning_rate=learning_rate, momentum=0.9, nesterov=True) # define losses function multi_box_loss = MultiBoxLoss() # load checkpoint checkpoint_dir = '/content/drive/My Drive/Colab/checkpoints/' + cfg[ 'sub_name'] checkpoint = tf.train.Checkpoint(step=tf.Variable(0, name='step'), optimizer=optimizer, model=model) manager = tf.train.CheckpointManager(checkpoint=checkpoint, directory=checkpoint_dir, max_to_keep=3) if manager.latest_checkpoint: checkpoint.restore(manager.latest_checkpoint) print('[*] load ckpt from {} at step {}.'.format( manager.latest_checkpoint, checkpoint.step.numpy())) else: print("[*] training from scratch.") # define training step function @tf.function def train_step(inputs, labels): with tf.GradientTape() as tape: predictions = model(inputs, training=True) losses = {} losses['reg'] = tf.reduce_sum(model.losses) losses['loc'], losses['landm'], losses['class'] = \ multi_box_loss(labels, predictions) total_loss = tf.add_n([l for l in losses.values()]) grads = tape.gradient(total_loss, model.trainable_variables) optimizer.apply_gradients(zip(grads, model.trainable_variables)) return total_loss, losses # training loop summary_writer = tf.summary.create_file_writer('./logs/' + cfg['sub_name']) remain_steps = max( steps_per_epoch * cfg['epoch'] - checkpoint.step.numpy(), 0) prog_bar = ProgressBar(steps_per_epoch, checkpoint.step.numpy() % steps_per_epoch) for inputs, labels in train_dataset.take(remain_steps): checkpoint.step.assign_add(1) steps = checkpoint.step.numpy() total_loss, losses = train_step(inputs, labels) prog_bar.update("epoch={}/{}, loss={:.4f}, lr={:.1e}".format( ((steps - 1) // steps_per_epoch) + 1, cfg['epoch'], total_loss.numpy(), optimizer.lr(steps).numpy())) if steps % 10 == 0: with summary_writer.as_default(): tf.summary.scalar('loss/total_loss', total_loss, step=steps) for k, l in losses.items(): tf.summary.scalar('loss/{}'.format(k), l, step=steps) tf.summary.scalar('learning_rate', optimizer.lr(steps), step=steps) if steps % cfg['save_steps'] == 0: manager.save() print("\n[*] save ckpt file at {}".format( manager.latest_checkpoint)) manager.save() print("\n[*] training done! save ckpt file at {}".format( manager.latest_checkpoint))
def main(_): # init os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' os.environ['CUDA_VISIBLE_DEVICES'] = FLAGS.gpu logger = tf.get_logger() logger.disabled = True logger.setLevel(logging.FATAL) set_memory_growth() cfg = load_yaml(FLAGS.cfg_path) # define network generator = RRDB_Model(cfg['input_size'], cfg['ch_size'], cfg['network_G']) generator.summary(line_length=80) discriminator = DiscriminatorVGG128(cfg['gt_size'], cfg['ch_size']) discriminator.summary(line_length=80) # load dataset train_dataset = load_dataset(cfg, 'train_dataset', shuffle=False) # define optimizer learning_rate_G = MultiStepLR(cfg['lr_G'], cfg['lr_steps'], cfg['lr_rate']) learning_rate_D = MultiStepLR(cfg['lr_D'], cfg['lr_steps'], cfg['lr_rate']) optimizer_G = tf.keras.optimizers.Adam(learning_rate=learning_rate_G, beta_1=cfg['adam_beta1_G'], beta_2=cfg['adam_beta2_G']) optimizer_D = tf.keras.optimizers.Adam(learning_rate=learning_rate_D, beta_1=cfg['adam_beta1_D'], beta_2=cfg['adam_beta2_D']) # define losses function pixel_loss_fn = PixelLoss(criterion=cfg['pixel_criterion']) fea_loss_fn = ContentLoss(criterion=cfg['feature_criterion']) gen_loss_fn = GeneratorLoss(gan_type=cfg['gan_type']) dis_loss_fn = DiscriminatorLoss(gan_type=cfg['gan_type']) # load checkpoint checkpoint_dir = './checkpoints/' + cfg['sub_name'] checkpoint = tf.train.Checkpoint(step=tf.Variable(0, name='step'), optimizer_G=optimizer_G, optimizer_D=optimizer_D, model=generator, discriminator=discriminator) manager = tf.train.CheckpointManager(checkpoint=checkpoint, directory=checkpoint_dir, max_to_keep=3) if manager.latest_checkpoint: checkpoint.restore(manager.latest_checkpoint) print('[*] load ckpt from {} at step {}.'.format( manager.latest_checkpoint, checkpoint.step.numpy())) else: if cfg['pretrain_name'] is not None: pretrain_dir = './checkpoints/' + cfg['pretrain_name'] if tf.train.latest_checkpoint(pretrain_dir): checkpoint.restore(tf.train.latest_checkpoint(pretrain_dir)) checkpoint.step.assign(0) print("[*] training from pretrain model {}.".format( pretrain_dir)) else: print( "[*] cannot find pretrain model {}.".format(pretrain_dir)) else: print("[*] training from scratch.") # define training step function @tf.function def train_step(lr, hr): with tf.GradientTape(persistent=True) as tape: sr = generator(lr, training=True) hr_output = discriminator(hr, training=True) sr_output = discriminator(sr, training=True) losses_G = {} losses_D = {} losses_G['reg'] = tf.reduce_sum(generator.losses) losses_D['reg'] = tf.reduce_sum(discriminator.losses) losses_G['pixel'] = cfg['w_pixel'] * pixel_loss_fn(hr, sr) losses_G['feature'] = cfg['w_feature'] * fea_loss_fn(hr, sr) losses_G['gan'] = cfg['w_gan'] * gen_loss_fn(hr_output, sr_output) losses_D['gan'] = dis_loss_fn(hr_output, sr_output) total_loss_G = tf.add_n([l for l in losses_G.values()]) total_loss_D = tf.add_n([l for l in losses_D.values()]) grads_G = tape.gradient(total_loss_G, generator.trainable_variables) grads_D = tape.gradient(total_loss_D, discriminator.trainable_variables) optimizer_G.apply_gradients(zip(grads_G, generator.trainable_variables)) optimizer_D.apply_gradients( zip(grads_D, discriminator.trainable_variables)) return total_loss_G, total_loss_D, losses_G, losses_D # training loop summary_writer = tf.summary.create_file_writer('./logs/' + cfg['sub_name']) prog_bar = ProgressBar(cfg['niter'], checkpoint.step.numpy()) remain_steps = max(cfg['niter'] - checkpoint.step.numpy(), 0) for lr, hr in train_dataset.take(remain_steps): checkpoint.step.assign_add(1) steps = checkpoint.step.numpy() total_loss_G, total_loss_D, losses_G, losses_D = train_step(lr, hr) prog_bar.update( "loss_G={:.4f}, loss_D={:.4f}, lr_G={:.1e}, lr_D={:.1e}".format( total_loss_G.numpy(), total_loss_D.numpy(), optimizer_G.lr(steps).numpy(), optimizer_D.lr(steps).numpy())) if steps % 10 == 0: with summary_writer.as_default(): tf.summary.scalar('loss_G/total_loss', total_loss_G, step=steps) tf.summary.scalar('loss_D/total_loss', total_loss_D, step=steps) for k, l in losses_G.items(): tf.summary.scalar('loss_G/{}'.format(k), l, step=steps) for k, l in losses_D.items(): tf.summary.scalar('loss_D/{}'.format(k), l, step=steps) tf.summary.scalar('learning_rate_G', optimizer_G.lr(steps), step=steps) tf.summary.scalar('learning_rate_D', optimizer_D.lr(steps), step=steps) if steps % cfg['save_steps'] == 0: manager.save() print("\n[*] save ckpt file at {}".format( manager.latest_checkpoint)) print("\n [*] training done!")
def main(_): # init os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' os.environ['CUDA_VISIBLE_DEVICES'] = FLAGS.gpu logger = tf.get_logger() logger.disabled = True logger.setLevel(logging.FATAL) set_memory_growth() cfg = load_yaml(FLAGS.cfg_path) # define network if cfg['network_G']['name']=='RRDB': # ESRGAN 4x model = RRDB_Model(None, cfg['ch_size'], cfg['network_G']) elif cfg['network_G']['name']=='RRDB_CIPLAB': model = RRDB_Model_16x(None, cfg['ch_size'], cfg['network_G']) elif cfg['network_G']['name']=='RFB_ESRGAN': model = RFB_Model_16x(None, cfg['ch_size'], cfg['network_G']) model.summary(line_length=80) # load dataset train_dataset = load_dataset(cfg, 'train_dataset', shuffle=True) set5_dataset = load_val_dataset(cfg, 'set5') set14_dataset = load_val_dataset(cfg, 'set14') if 'DIV8K' in cfg['test_dataset']: DIV8K_val = load_val_dataset(cfg, 'DIV8K', crop_centor=cfg['test_dataset']['DIV8K_crop_centor']) # define optimizer learning_rate = MultiStepLR(cfg['lr'], cfg['lr_steps'], cfg['lr_rate']) optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate, beta_1=cfg['adam_beta1_G'], beta_2=cfg['adam_beta2_G']) # define losses function if cfg['cycle_mse']: pixel_loss_fn = PixelLossDown(criterion=cfg['pixel_criterion'], scale=cfg['scale']) else: pixel_loss_fn = PixelLoss(criterion=cfg['pixel_criterion']) # load checkpoint checkpoint_dir = cfg['log_dir'] + '/checkpoints' checkpoint = tf.train.Checkpoint(step=tf.Variable(0, name='step'), optimizer=optimizer, model=model) manager = tf.train.CheckpointManager(checkpoint=checkpoint, directory=checkpoint_dir, max_to_keep=3) if manager.latest_checkpoint: checkpoint.restore(manager.latest_checkpoint) print('[*] load ckpt from {} at step {}.'.format( manager.latest_checkpoint, checkpoint.step.numpy())) else: print("[*] training from scratch.") # define training step function @tf.function def train_step(lr, hr): with tf.GradientTape() as tape: sr = model(lr, training=True) losses = {} losses['reg'] = tf.reduce_sum(model.losses) losses['pixel'] = cfg['w_pixel'] * pixel_loss_fn(hr, sr) total_loss = tf.add_n([l for l in losses.values()]) grads = tape.gradient(total_loss, model.trainable_variables) optimizer.apply_gradients(zip(grads, model.trainable_variables)) return total_loss, losses # training loop summary_writer = tf.summary.create_file_writer(cfg['log_dir']+'/logs') prog_bar = ProgressBar(cfg['niter'], checkpoint.step.numpy()) remain_steps = max(cfg['niter'] - checkpoint.step.numpy(), 0) for _ in range(remain_steps): lr, hr = train_dataset() checkpoint.step.assign_add(1) steps = checkpoint.step.numpy() total_loss, losses = train_step(lr, hr) prog_bar.update("loss={:.4f}, lr={:.1e}".format( total_loss.numpy(), optimizer.lr(steps).numpy())) if steps % 10 == 0: with summary_writer.as_default(): tf.summary.scalar( 'loss/total_loss', total_loss, step=steps) for k, l in losses.items(): tf.summary.scalar('loss/{}'.format(k), l, step=steps) tf.summary.scalar( 'learning_rate', optimizer.lr(steps), step=steps) if steps % cfg['save_steps'] == 0: manager.save() print("\n[*] save ckpt file at {}".format( manager.latest_checkpoint)) # log results on test data set5_logs = evaluate_dataset(set5_dataset, model, cfg) set14_logs = evaluate_dataset(set14_dataset, model, cfg) if 'DIV8K' in cfg['test_dataset']: DIV8K_logs = evaluate_dataset(DIV8K_val, model, cfg) with summary_writer.as_default(): if cfg['logging']['psnr']: tf.summary.scalar('set5/psnr', set5_logs['psnr'], step=steps) tf.summary.scalar('set14/psnr', set14_logs['psnr'], step=steps) if 'DIV8K' in cfg['test_dataset']: tf.summary.scalar('DIV8K/psnr', DIV8K_logs['psnr'], step=steps) if cfg['logging']['ssim']: tf.summary.scalar('set5/ssim', set5_logs['ssim'], step=steps) tf.summary.scalar('set14/ssim', set14_logs['ssim'], step=steps) if 'DIV8K' in cfg['test_dataset']: tf.summary.scalar('DIV8K/psnr', DIV8K_logs['psnr'], step=steps) if cfg['logging']['lpips']: tf.summary.scalar('set5/lpips', set5_logs['lpips'], step=steps) tf.summary.scalar('set14/lpips', set14_logs['lpips'], step=steps) if 'DIV8K' in cfg['test_dataset']: tf.summary.scalar('DIV8K/lpips', DIV8K_logs['lpips'], step=steps) if cfg['logging']['plot_samples']: tf.summary.image("set5/samples", [set5_logs['samples']], step=steps) tf.summary.image("set14/samples", [set14_logs['samples']], step=steps) if 'DIV8K' in cfg['test_dataset']: tf.summary.image("DIV8K/samples", [DIV8K_logs['samples']], step=steps) print("\n[*] training done!")
def main(_): # init os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' os.environ['CUDA_VISIBLE_DEVICES'] = FLAGS.gpu logger = tf.get_logger() logger.disabled = True logger.setLevel(logging.FATAL) set_memory_growth() cfg = load_yaml(FLAGS.cfg_path) # define network model = RRDB_Model(cfg['input_size'], cfg['ch_size'], cfg['network_G']) model.summary(line_length=80) # load dataset train_dataset = load_dataset(cfg, 'train_dataset', shuffle=True) # define optimizer learning_rate = MultiStepLR(cfg['lr'], cfg['lr_steps'], cfg['lr_rate']) optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate, beta_1=cfg['adam_beta1_G'], beta_2=cfg['adam_beta2_G']) # define losses function pixel_loss_fn = PixelLoss(criterion=cfg['pixel_criterion']) # load checkpoint checkpoint_dir = './checkpoints/' + cfg['sub_name'] checkpoint = tf.train.Checkpoint(step=tf.Variable(0, name='step'), optimizer=optimizer, model=model) manager = tf.train.CheckpointManager(checkpoint=checkpoint, directory=checkpoint_dir, max_to_keep=3) if manager.latest_checkpoint: checkpoint.restore(manager.latest_checkpoint) print('[*] load ckpt from {} at step {}.'.format( manager.latest_checkpoint, checkpoint.step.numpy())) else: print("[*] training from scratch.") # define training step function @tf.function def train_step(lr, hr): with tf.GradientTape() as tape: sr = model(lr, training=True) losses = {} losses['reg'] = tf.reduce_sum(model.losses) losses['pixel'] = cfg['w_pixel'] * pixel_loss_fn(hr, sr) total_loss = tf.add_n([l for l in losses.values()]) grads = tape.gradient(total_loss, model.trainable_variables) optimizer.apply_gradients(zip(grads, model.trainable_variables)) return total_loss, losses # training loop summary_writer = tf.summary.create_file_writer('./logs/' + cfg['sub_name']) prog_bar = ProgressBar(cfg['niter'], checkpoint.step.numpy()) remain_steps = max(cfg['niter'] - checkpoint.step.numpy(), 0) for lr, hr in train_dataset.take(remain_steps): checkpoint.step.assign_add(1) steps = checkpoint.step.numpy() total_loss, losses = train_step(lr, hr) prog_bar.update("loss={:.4f}, lr={:.1e}".format( total_loss.numpy(), optimizer.lr(steps).numpy())) if steps % 10 == 0: with summary_writer.as_default(): tf.summary.scalar('loss/total_loss', total_loss, step=steps) for k, l in losses.items(): tf.summary.scalar('loss/{}'.format(k), l, step=steps) tf.summary.scalar('learning_rate', optimizer.lr(steps), step=steps) if steps % cfg['save_steps'] == 0: manager.save() print("\n[*] save ckpt file at {}".format( manager.latest_checkpoint)) print("\n[*] training done!")
def train_retinaface(cfg): # init os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' if cfg['distributed']: import horovod.tensorflow as hvd # Initialize Horovod hvd.init() else: hvd = [] os.environ['CUDA_VISIBLE_DEVICES'] = '0' reset_random_seeds() logger = tf.get_logger() logger.disabled = True logger.setLevel(logging.FATAL) set_memory_growth(hvd) # define network model = RetinaFaceModel(cfg, training=True) model.summary(line_length=80) # define prior box priors = prior_box((cfg['input_size'], cfg['input_size']), cfg['min_sizes'], cfg['steps'], cfg['clip']) # load dataset train_dataset = load_dataset(cfg, priors, 'train', hvd) if cfg['evaluation_during_training']: val_dataset = load_dataset(cfg, priors, 'val', []) # define optimizer if cfg['distributed']: init_lr = cfg['init_lr'] * hvd.size() min_lr = cfg['min_lr'] * hvd.size() steps_per_epoch = cfg['dataset_len'] // (cfg['batch_size'] * hvd.size()) else: init_lr = cfg['init_lr'] min_lr = cfg['min_lr'] steps_per_epoch = cfg['dataset_len'] // cfg['batch_size'] learning_rate = MultiStepWarmUpLR( initial_learning_rate=init_lr, lr_steps=[e * steps_per_epoch for e in cfg['lr_decay_epoch']], lr_rate=cfg['lr_rate'], warmup_steps=cfg['warmup_epoch'] * steps_per_epoch, min_lr=min_lr) optimizer = tf.keras.optimizers.SGD( learning_rate=learning_rate, momentum=0.9, nesterov=True) # define losses function multi_box_loss = MultiBoxLoss(num_class=cfg['num_class']) # load checkpoint checkpoint_dir = os.path.join(cfg['output_path'], 'checkpoints', cfg['sub_name']) checkpoint = tf.train.Checkpoint(epoch=tf.Variable(0, name='epoch'), optimizer=optimizer, model=model) manager = tf.train.CheckpointManager(checkpoint=checkpoint, directory=checkpoint_dir, max_to_keep=3) os.makedirs(checkpoint_dir, exist_ok=True) with open(os.path.join(checkpoint_dir, 'cfg.pickle'), 'wb') as handle: pickle.dump(cfg, handle, protocol=pickle.HIGHEST_PROTOCOL) if manager.latest_checkpoint: checkpoint.restore(manager.latest_checkpoint) print('[*] load ckpt from {}'.format(manager.latest_checkpoint)) else: print("[*] training from scratch.") # define training step function @tf.function def train_step(inputs, labels, first_batch, epoch): with tf.GradientTape() as tape: predictions = model(inputs, training=True) losses = {} losses['reg'] = tf.reduce_sum(model.losses) losses['loc'], losses['landm'], losses['class'] = \ multi_box_loss(labels, predictions) total_loss = tf.add_n([l for l in losses.values()]) if cfg['distributed']: # Horovod: add Horovod Distributed GradientTape. tape = hvd.DistributedGradientTape(tape) grads = tape.gradient(total_loss, model.trainable_variables) optimizer.apply_gradients(zip(grads, model.trainable_variables)) if cfg['distributed'] and first_batch and epoch: hvd.broadcast_variables(model.variables, root_rank=0) hvd.broadcast_variables(optimizer.variables(), root_rank=0) return total_loss, losses def test_step(inputs, img_name): _, img_height_raw, img_width_raw, _ = inputs.shape # pad input image to avoid unmatched shape problem img = inputs[0].numpy() # if img_name == '6_Funeral_Funeral_6_618': # resize = 0.5 # this image is too big to avoid OOM problem # img = cv2.resize(img, None, None, fx=resize, fy=resize, # interpolation=cv2.INTER_LINEAR) img, pad_params = pad_input_image(img, max_steps=max(cfg['steps'])) input_img = img[np.newaxis, ...] predictions = model(input_img, training=False) outputs = pred_to_outputs(cfg, predictions, input_img.shape).numpy() # recover padding effect outputs = recover_pad_output(outputs, pad_params) bboxs = outputs[:, :4] confs = outputs[:, -1] pred_boxes = [] for box, conf in zip(bboxs, confs): x = int(box[0] * img_width_raw) y = int(box[1] * img_height_raw) w = int(box[2] * img_width_raw) - int(box[0] * img_width_raw) h = int(box[3] * img_height_raw) - int(box[1] * img_height_raw) pred_boxes.append([x, y, w, h, conf]) pred_boxes = np.array(pred_boxes).astype('float') return pred_boxes #training loop summary_writer = tf.summary.create_file_writer(os.path.join(cfg['output_path'], 'logs', cfg['sub_name'])) prog_bar = ProgressBar(steps_per_epoch, 0) if cfg['evaluation_during_training']: widerface_eval_hard = WiderFaceEval(split='hard') for epoch in range(cfg['epoch']): try: actual_epoch = epoch + 1 if cfg['distributed']: if hvd.rank() == 0: print("\nStart of epoch %d" % (actual_epoch,)) else: print("\nStart of epoch %d" % (actual_epoch,)) checkpoint.epoch.assign_add(1) start_time = time.time() #Iterate over the batches of the dataset. for batch, (x_batch_train, y_batch_train, img_name) in enumerate(train_dataset): total_loss, losses = train_step(x_batch_train, y_batch_train, batch == 0, epoch == 0) if cfg['distributed']: if hvd.rank() == 0: # prog_bar.update("epoch={}/{}, loss={:.4f}, lr={:.1e}".format( # checkpoint.epoch.numpy(), cfg['epoch'], total_loss.numpy(), optimizer._decayed_lr(tf.float32))) if batch % 100 == 0: print("batch={}/{}, epoch={}/{}, loss={:.4f}, lr={:.1e}".format( batch, steps_per_epoch, checkpoint.epoch.numpy(), cfg['epoch'], total_loss.numpy(), optimizer._decayed_lr(tf.float32))) else: prog_bar.update("epoch={}/{}, loss={:.4f}, lr={:.1e}".format( checkpoint.epoch.numpy(), cfg['epoch'], total_loss.numpy(), optimizer._decayed_lr(tf.float32))) # Display metrics at the end of each epoch. # train_acc = train_acc_metric.result() # print("\nTraining loss over epoch: %.4f" % (float(total_loss.numpy()),)) if cfg['distributed']: if hvd.rank() == 0: print("Time taken: %.2fs" % (time.time() - start_time)) manager.save() print("\n[*] save ckpt file at {}".format(manager.latest_checkpoint)) else: print("Time taken: %.2fs" % (time.time() - start_time)) manager.save() print("\n[*] save ckpt file at {}".format(manager.latest_checkpoint)) if cfg['evaluation_during_training']: # Run a validation loop at the end of each epoch. for batch, (x_batch_val, y_batch_val, img_name) in enumerate(val_dataset.take(500)): if '/' in img_name.numpy()[0].decode(): img_name = img_name.numpy()[0].decode().split('/')[1].split('.')[0] else: img_name = [] pred_boxes = test_step(x_batch_val, img_name) gt_boxes = labels_to_boxes(y_batch_val) widerface_eval_hard.update(pred_boxes, gt_boxes, img_name) ap_hard = widerface_eval_hard.calculate_ap() widerface_eval_hard.reset() if cfg['distributed']: if hvd.rank() == 0: print("Validation acc: %.4f" % (float(ap_hard),)) else: print("Validation acc: %.4f" % (float(ap_hard),)) def tensorboard_writer(): with summary_writer.as_default(): tf.summary.scalar('loss/total_loss', total_loss, step=actual_epoch) for k, l in losses.items(): tf.summary.scalar('loss/{}'.format(k), l, step=actual_epoch) tf.summary.scalar('learning_rate', optimizer._decayed_lr(tf.float32), step=actual_epoch) if cfg['evaluation_during_training']: tf.summary.scalar('Val AP', ap_hard, step=actual_epoch) if cfg['distributed']: if hvd.rank() == 0: tensorboard_writer() else: tensorboard_writer() except Exception as E: print(E) continue if cfg['distributed']: if hvd.rank() == 0: manager.save() print("\n[*] training done! save ckpt file at {}".format( manager.latest_checkpoint)) else: manager.save() print("\n[*] training done! save ckpt file at {}".format( manager.latest_checkpoint))