Exemple #1
0
    def residual(params, x, obs, mol0, ll0, ul0, line_profile0, res0, units,
                 continuum):

        parvals = params.valuesdict()
        size = parvals['size']
        dV = parvals['dV']
        velocity = parvals['velocity']
        Tex = parvals['Tex']
        column = parvals['column']

        #generate a source object
        source = Source(
            continuum=continuum,
            size=size,
            dV=dV,
            velocity=velocity,
            Tex=Tex,
            column=column,
        )

        #create a simulation
        sim = Simulation(mol=mol0,
                         ll=ll0,
                         ul=ul0,
                         observation=obs,
                         source=source,
                         line_profile=line_profile0,
                         res=res0,
                         use_obs=True,
                         units=units)

        return_sims.append(sim)
        return np.array(obs.spectrum.Tb - sim.spectrum.int_profile)
Exemple #2
0
 def source(self):
     return Source(
         size=self.source_size,
         dV=self.dv,
         velocity=self.vlsr,
         Tex=self.tex,
         column=self.ncol,
     )
Exemple #3
0
def process_mcmc_json(json_file, molecule, observation, ll=0, ul=float('inf'), line_profile='Gaussian', res=0.0014, stack_params = None, stack_plot_params = None, make_plots=True, return_json = False):

	from molsim.classes import Source, Simulation
	from molsim.functions import sum_spectra, velocity_stack, matched_filter
	from molsim.plotting import plot_stack, plot_mf
	
	with open(json_file) as input:
		json_dict = json.load(input)
		
	n_sources = len(json_dict['SourceSize']['mean'])
	
	sources = []
	
	for size,vlsr,col,tex,dv in zip(
		json_dict['SourceSize']['mean'],
		json_dict['VLSR']['mean'],
		json_dict['NCol']['mean'],
		json_dict['Tex']['mean'],
		json_dict['dV']['mean']):
		sources.append(Source(size=size,velocity=vlsr,column=col,Tex=tex,dV=dv))
		
	sims = [Simulation(mol=molecule,ll=ll,ul=ul,observation=observation,source=x,line_profile=line_profile,res=res) for x in sources]	
	sum1 = sum_spectra(sims)
	
	if make_plots is False:
		if return_json is True:
			return sources, sims, sum1, json_dict
		else:
			return sources, sims, sum1
			
	internal_stack_params = {'selection' : 'lines',
					'freq_arr' : observation.spectrum.frequency,
					'int_arr' : observation.spectrum.Tb,
					'freq_sim' : sum1.freq_profile,
					'int_sim' : sum1.int_profile,
					'res_inp' : res,
					'dV' : np.mean([x for x in json_dict['dV']['mean']]),
					'dV_ext' : 40,
					'vlsr' : np.mean([x for x in json_dict['VLSR']['mean']]),
					'vel_width' : 40,
					'v_res' : 0.02,
					'blank_lines' : True,
					'blank_keep_range' : [-5*np.mean([x for x in json_dict['dV']['mean']]),5*np.mean([x for x in json_dict['dV']['mean']])],
					'flag_lines' : False,
					'flag_sigma' : 5,
					}	
	
	if stack_params is not None:
		for x in stack_params:
			internal_stack_params[x] = stack_params[x]
		
	stack = velocity_stack(internal_stack_params)
	
	internal_stack_plot_params = {'xlimits' : [-10,10]}
	
	if stack_plot_params is not None:
		for	x in stack_plot_params:
			internal_stack_plot_params[x] = stack_plot_params[x]
		
	plot_stack(stack,params=internal_stack_plot_params)	
	
	mf = matched_filter(stack.velocity,
						stack.snr,
						stack.int_sim[find_nearest(stack.velocity,-2):find_nearest(stack.velocity,2)])
	plot_mf(mf)
	
	if return_json is True:
		return sources, sims, sum1, json_dict
	else:
		return sources, sims, sum1	
					
				
				
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
				
			
Exemple #4
0
    def simulate_spectrum(self,
                          parameters: np.ndarray,
                          scale: float = 3.0) -> np.ndarray:
        """
        Wraps `molsim` functionality to simulate the spectrum, given a set
        of input parameters as a NumPy 1D array. On the first pass, this generates
        a `Simulation` instance and stores it, which has some overhead associated
        with figuring out which catalog entries to simulate. After the first
        pass, the instance is re-used with the `Source` object updated with
        the new parameters.

        The nuance in this function is with `scale`: during the preprocess
        step, we assume that the observation frequency is not shifted to the
        source reference. To simulate with molsim, we identify where the catalog
        overlaps with our frequency windows, and because it is unshifted this
        causes molsim to potentially ignore a lot of lines (particularly
        high frequency ones). The `scale` parameter scales the input VLSR
        as to make sure that we cover everything as best as we can.

        Parameters
        ----------
        parameters : np.ndarray
            NumPy 1D array containing parameters for the simulation.
        scale : float, optional
            Modifies the window to consider catalog overlap, by default 3.

        Returns
        -------
        np.ndarray
            NumPy 1D array corresponding to the simulated spectrum
        """
        size, vlsr, ncol, Tex, dV = parameters
        # Assume that the value is in log space, if it's below 1000
        if ncol <= 1e3:
            ncol = 10**ncol
        source = Source("", vlsr, size, column=ncol, Tex=Tex, dV=dV)
        if not hasattr(self, "simulation"):
            min_freq, max_freq = find_limits(
                self.observation.spectrum.frequency)
            # there's a buffer here just to make sure we don't go out of bounds
            # and suddenly stop simulating lines
            min_offsets = compute.calculate_dopplerwidth_frequency(
                min_freq, vlsr * scale)
            max_offsets = compute.calculate_dopplerwidth_frequency(
                max_freq, vlsr * scale)
            min_freq -= min_offsets
            max_freq += max_offsets
            self.simulation = Simulation(
                mol=self.molecule,
                ll=min_freq,
                ul=max_freq,
                observation=self.observation,
                source=source,
                line_profile="gaussian",
                use_obs=True,
            )
        else:
            self.simulation.source = source
            self.simulation._apply_voffset()
            self.simulation._calc_tau()
            self.simulation._make_lines()
            self.simulation._beam_correct()
        intensity = self.simulation.spectrum.int_profile
        return intensity