Exemple #1
0
 def from_yml(cls, yml_path: str):
     input_dict = load_yaml(yml_path)
     cls_dict = dict()
     vlsrs, Ncols = list(), list()
     # make sure the number of components is the same
     assert len(input_dict["vlsrs"]) == len(input_dict["Ncols"])
     n_components = len(input_dict["vlsrs"])
     # parse in all the different parameters
     for param_list, parameter in zip([vlsrs, Ncols], ["vlsrs", "Ncols"]):
         for index in range(n_components):
             size_params = input_dict[parameter][index]
             size_params["name"] = f"{parameter}_{index}"
             if "mu" in size_params:
                 dist = GaussianLikelihood
             elif "value" in size_params:
                 dist = DeltaLikelihood
             else:
                 dist = UniformLikelihood
             param_list.append(dist.from_values(**size_params))
         cls_dict[parameter] = param_list
     # the three stragglers
     for key in ["source_size", "Tex", "dV"]:
         input_dict[key]["name"] = key
         if "mu" in input_dict[key]:
             dist = GaussianLikelihood
         elif "value" in input_dict[key]:
             dist = DeltaLikelihood
         else:
             dist = UniformLikelihood
         cls_dict[key] = dist.from_values(**input_dict[key])
     # load in the observed data
     cls_dict["observation"] = load(input_dict["observation"])
     cls_dict["molecule"] = load(input_dict["molecule"])
     return cls(**cls_dict)
Exemple #2
0
    def from_yml(cls, yml_path: str):
        """
        Creates a composite model from a YAML input. As one can imagine,
        the format of this YAML is substantially different from the
        non-composite models. The structure of the YAML should be like:

        ```
        param_indices: [[1, 2, 3,], [1, 2, 3]]
        model_A:
           model: TMC1FourComponent
           yml_path: model_A.yml
        model_B:
           model: CospatialTMC1
           yml_path: model_B.yml
        ```

        The `model` subkeys should correspond to the name of a model class,
        which is used to grab the correct one to instantiate. It basically
        then relies on each `submodel.from_yml` method to create the submodel
        and then append it to full model list.

        Parameters
        ----------
        yml_path : str
            Path to the composite model YAML specification

        Raises
        ------
        KeyError
            If the parameter indices are not found in the composite
            YAML specification.
        NameError
            If the model name specified
        """
        yml_data = load_yaml(yml_path)
        # get the parameter indices and remove it from the dictionary
        param_indices = yml_data.pop("param_indices", None)
        if not param_indices:
            raise KeyError("param_indices not specified in YAML file.")
        models = list()
        for index, subdict in enumerate(yml_data.values()):
            # this tries to get the class
            model_type = globals()[subdict.get("model")]
            if not model_type:
                raise NameError(
                    f"Model type for model {index + 1} is not implemented: {subdict.get('model')}"
                )
            # construct the submodel, and throw it in the pile
            submodel = model_type.from_yml(subdict.get("yml_path"))
            models.append(submodel)
        return cls(param_indices, *models)
Exemple #3
0
 def from_yml(cls, yml_path: str):
     input_dict = load_yaml(yml_path)
     cls_dict = dict()
     # the two stragglers
     for key in input_dict.keys():
         if key not in ["observation", "molecule", "nominal_vlsr"]:
             if hasattr(input_dict[key], "mu"):
                 dist = GaussianLikelihood
             else:
                 dist = UniformLikelihood
             cls_dict[key] = dist.from_values(**input_dict[key])
         else:
             if key != "nominal_vlsr":
                 # load in the observed data
                 cls_dict[key] = load(input_dict[key])
             else:
                 logger.warning(f"{key} is not recognized, and therefore ignored.")
     return cls(**cls_dict)