def main():
    config.print_config()
    logging.basicConfig(stream=sys.stdout, level=logging.INFO)

    tempdir = tempfile.mkdtemp()
    print('generating synthetic data to {} (this may take a while)'.format(tempdir))
    for i in range(5):
        im, seg = create_test_image_3d(128, 128, 128, num_seg_classes=1)

        n = nib.Nifti1Image(im, np.eye(4))
        nib.save(n, os.path.join(tempdir, 'im%i.nii.gz' % i))

        n = nib.Nifti1Image(seg, np.eye(4))
        nib.save(n, os.path.join(tempdir, 'seg%i.nii.gz' % i))

    images = sorted(glob(os.path.join(tempdir, 'im*.nii.gz')))
    segs = sorted(glob(os.path.join(tempdir, 'seg*.nii.gz')))

    # define transforms for image and segmentation
    imtrans = Compose([ScaleIntensity(), AddChannel(), ToTensor()])
    segtrans = Compose([AddChannel(), ToTensor()])
    val_ds = NiftiDataset(images, segs, transform=imtrans, seg_transform=segtrans, image_only=False)
    # sliding window inference for one image at every iteration
    val_loader = DataLoader(val_ds, batch_size=1, num_workers=1, pin_memory=torch.cuda.is_available())

    device = torch.device('cuda:0')
    model = UNet(
        dimensions=3,
        in_channels=1,
        out_channels=1,
        channels=(16, 32, 64, 128, 256),
        strides=(2, 2, 2, 2),
        num_res_units=2,
    ).to(device)

    model.load_state_dict(torch.load('best_metric_model.pth'))
    model.eval()
    with torch.no_grad():
        metric_sum = 0.
        metric_count = 0
        saver = NiftiSaver(output_dir='./output')
        for val_data in val_loader:
            val_images, val_labels = val_data[0].to(device), val_data[1].to(device)
            # define sliding window size and batch size for windows inference
            roi_size = (96, 96, 96)
            sw_batch_size = 4
            val_outputs = sliding_window_inference(val_images, roi_size, sw_batch_size, model)
            value = compute_meandice(y_pred=val_outputs, y=val_labels, include_background=True,
                                     to_onehot_y=False, add_sigmoid=True)
            metric_count += len(value)
            metric_sum += value.sum().item()
            val_outputs = (val_outputs.sigmoid() >= 0.5).float()
            saver.save_batch(val_outputs, val_data[2])
        metric = metric_sum / metric_count
        print('evaluation metric:', metric)
    shutil.rmtree(tempdir)
def main(tempdir):
    config.print_config()
    logging.basicConfig(stream=sys.stdout, level=logging.INFO)

    print(f"generating synthetic data to {tempdir} (this may take a while)")
    for i in range(5):
        im, seg = create_test_image_3d(128, 128, 128, num_seg_classes=1)

        n = nib.Nifti1Image(im, np.eye(4))
        nib.save(n, os.path.join(tempdir, f"im{i:d}.nii.gz"))

        n = nib.Nifti1Image(seg, np.eye(4))
        nib.save(n, os.path.join(tempdir, f"seg{i:d}.nii.gz"))

    images = sorted(glob(os.path.join(tempdir, "im*.nii.gz")))
    segs = sorted(glob(os.path.join(tempdir, "seg*.nii.gz")))

    # define transforms for image and segmentation
    imtrans = Compose([ScaleIntensity(), AddChannel(), ToTensor()])
    segtrans = Compose([AddChannel(), ToTensor()])
    val_ds = ImageDataset(images, segs, transform=imtrans, seg_transform=segtrans, image_only=False)
    # sliding window inference for one image at every iteration
    val_loader = DataLoader(val_ds, batch_size=1, num_workers=1, pin_memory=torch.cuda.is_available())
    dice_metric = DiceMetric(include_background=True, reduction="mean")
    post_trans = Compose([Activations(sigmoid=True), AsDiscrete(threshold_values=True)])
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model = UNet(
        dimensions=3,
        in_channels=1,
        out_channels=1,
        channels=(16, 32, 64, 128, 256),
        strides=(2, 2, 2, 2),
        num_res_units=2,
    ).to(device)

    model.load_state_dict(torch.load("best_metric_model_segmentation3d_array.pth"))
    model.eval()
    with torch.no_grad():
        metric_sum = 0.0
        metric_count = 0
        saver = NiftiSaver(output_dir="./output")
        for val_data in val_loader:
            val_images, val_labels = val_data[0].to(device), val_data[1].to(device)
            # define sliding window size and batch size for windows inference
            roi_size = (96, 96, 96)
            sw_batch_size = 4
            val_outputs = sliding_window_inference(val_images, roi_size, sw_batch_size, model)
            val_outputs = post_trans(val_outputs)
            value, _ = dice_metric(y_pred=val_outputs, y=val_labels)
            metric_count += len(value)
            metric_sum += value.item() * len(value)
            saver.save_batch(val_outputs, val_data[2])
        metric = metric_sum / metric_count
        print("evaluation metric:", metric)
def main(tempdir):
    config.print_config()
    logging.basicConfig(stream=sys.stdout, level=logging.INFO)

    print(f"generating synthetic data to {tempdir} (this may take a while)")
    for i in range(5):
        im, seg = create_test_image_2d(128, 128, num_seg_classes=1)
        Image.fromarray((im * 255).astype("uint8")).save(os.path.join(tempdir, f"img{i:d}.png"))
        Image.fromarray((seg * 255).astype("uint8")).save(os.path.join(tempdir, f"seg{i:d}.png"))

    images = sorted(glob(os.path.join(tempdir, "img*.png")))
    segs = sorted(glob(os.path.join(tempdir, "seg*.png")))

    # define transforms for image and segmentation
    imtrans = Compose([LoadImage(image_only=True), AddChannel(), ScaleIntensity(), EnsureType()])
    segtrans = Compose([LoadImage(image_only=True), AddChannel(), ScaleIntensity(), EnsureType()])
    val_ds = ArrayDataset(images, imtrans, segs, segtrans)
    # sliding window inference for one image at every iteration
    val_loader = DataLoader(val_ds, batch_size=1, num_workers=1, pin_memory=torch.cuda.is_available())
    dice_metric = DiceMetric(include_background=True, reduction="mean", get_not_nans=False)
    post_trans = Compose([EnsureType(), Activations(sigmoid=True), AsDiscrete(threshold=0.5)])
    saver = SaveImage(output_dir="./output", output_ext=".png", output_postfix="seg")
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model = UNet(
        spatial_dims=2,
        in_channels=1,
        out_channels=1,
        channels=(16, 32, 64, 128, 256),
        strides=(2, 2, 2, 2),
        num_res_units=2,
    ).to(device)

    model.load_state_dict(torch.load("best_metric_model_segmentation2d_array.pth"))
    model.eval()
    with torch.no_grad():
        for val_data in val_loader:
            val_images, val_labels = val_data[0].to(device), val_data[1].to(device)
            # define sliding window size and batch size for windows inference
            roi_size = (96, 96)
            sw_batch_size = 4
            val_outputs = sliding_window_inference(val_images, roi_size, sw_batch_size, model)
            val_outputs = [post_trans(i) for i in decollate_batch(val_outputs)]
            val_labels = decollate_batch(val_labels)
            # compute metric for current iteration
            dice_metric(y_pred=val_outputs, y=val_labels)
            for val_output in val_outputs:
                saver(val_output)
        # aggregate the final mean dice result
        print("evaluation metric:", dice_metric.aggregate().item())
        # reset the status
        dice_metric.reset()
Exemple #4
0
import monai
from monai import config
from monai.data.nifti_reader import NiftiDataset
from monai.transforms import (AddChannel, Rescale, ToTensor,
                              UniformRandomPatch)
from monai.handlers.stats_handler import StatsHandler
from monai.handlers.mean_dice import MeanDice
from monai.visualize import img2tensorboard
from monai.data.synthetic import create_test_image_3d
from monai.handlers.utils import stopping_fn_from_metric

# assumes the framework is found here, change as necessary
sys.path.append("..")

config.print_config()

# Create a temporary directory and 50 random image, mask paris
tempdir = tempfile.mkdtemp()

for i in range(50):
    im, seg = create_test_image_3d(256, 256, 256)

    n = nib.Nifti1Image(im, np.eye(4))
    nib.save(n, os.path.join(tempdir, 'im%i.nii.gz' % i))

    n = nib.Nifti1Image(seg, np.eye(4))
    nib.save(n, os.path.join(tempdir, 'seg%i.nii.gz' % i))

images = sorted(glob(os.path.join(tempdir, 'im*.nii.gz')))
segs = sorted(glob(os.path.join(tempdir, 'seg*.nii.gz')))
def run_training(train_file_list, valid_file_list, config_info):
    """
    Pipeline to train a dynUNet segmentation model in MONAI. It is composed of the following main blocks:
        * Data Preparation: Extract the filenames and prepare the training/validation processing transforms
        * Load Data: Load training and validation data to PyTorch DataLoader
        * Network Preparation: Define the network, loss function, optimiser and learning rate scheduler
        * MONAI Evaluator: Initialise the dynUNet evaluator, i.e. the class providing utilities to perform validation
            during training. Attach handlers to save the best model on the validation set. A 2D sliding window approach
            on the 3D volume is used at evaluation. The mean 3D Dice is used as validation metric.
        * MONAI Trainer: Initialise the dynUNet trainer, i.e. the class providing utilities to perform the training loop.
        * Run training: The MONAI trainer is run, performing training and validation during training.
    Args:
        train_file_list: .txt or .csv file (with no header) storing two-columns filenames for training:
            image filename in the first column and segmentation filename in the second column.
            The two columns should be separated by a comma.
            See monaifbs/config/mock_train_file_list_for_dynUnet_training.txt for an example of the expected format.
        valid_file_list: .txt or .csv file (with no header) storing two-columns filenames for validation:
            image filename in the first column and segmentation filename in the second column.
            The two columns should be separated by a comma.
            See monaifbs/config/mock_valid_file_list_for_dynUnet_training.txt for an example of the expected format.
        config_info: dict, contains configuration parameters for sampling, network and training.
            See monaifbs/config/monai_dynUnet_training_config.yml for an example of the expected fields.
    """

    """
    Read input and configuration parameters
    """
    # print MONAI config information
    logging.basicConfig(stream=sys.stdout, level=logging.INFO)
    print_config()

    # print to log the parameter setups
    print(yaml.dump(config_info))

    # extract network parameters, perform checks/set defaults if not present and print them to log
    if 'seg_labels' in config_info['training'].keys():
        seg_labels = config_info['training']['seg_labels']
    else:
        seg_labels = [1]
    nr_out_channels = len(seg_labels)
    print("Considering the following {} labels in the segmentation: {}".format(nr_out_channels, seg_labels))
    patch_size = config_info["training"]["inplane_size"] + [1]
    print("Considering patch size = {}".format(patch_size))

    spacing = config_info["training"]["spacing"]
    print("Bringing all images to spacing = {}".format(spacing))

    if 'model_to_load' in config_info['training'].keys() and config_info['training']['model_to_load'] is not None:
        model_to_load = config_info['training']['model_to_load']
        if not os.path.exists(model_to_load):
            raise FileNotFoundError("Cannot find model: {}".format(model_to_load))
        else:
            print("Loading model from {}".format(model_to_load))
    else:
        model_to_load = None

    # set up either GPU or CPU usage
    if torch.cuda.is_available():
        print("\n#### GPU INFORMATION ###")
        print("Using device number: {}, name: {}\n".format(torch.cuda.current_device(), torch.cuda.get_device_name()))
        current_device = torch.device("cuda:0")
    else:
        current_device = torch.device("cpu")
        print("Using device: {}".format(current_device))

    # set determinism if required
    if 'manual_seed' in config_info['training'].keys() and config_info['training']['manual_seed'] is not None:
        seed = config_info['training']['manual_seed']
    else:
        seed = None
    if seed is not None:
        print("Using determinism with seed = {}\n".format(seed))
        set_determinism(seed=seed)

    """
    Setup data output directory
    """
    out_model_dir = os.path.join(config_info['output']['out_dir'],
                                 datetime.now().strftime('%Y-%m-%d_%H-%M-%S') + '_' +
                                 config_info['output']['out_postfix'])
    print("Saving to directory {}\n".format(out_model_dir))
    # create cache directory to store results for Persistent Dataset
    if 'cache_dir' in config_info['output'].keys():
        out_cache_dir = config_info['output']['cache_dir']
    else:
        out_cache_dir = os.path.join(out_model_dir, 'persistent_cache')
    persistent_cache: Path = Path(out_cache_dir)
    persistent_cache.mkdir(parents=True, exist_ok=True)

    """
    Data preparation
    """
    # Read the input files for training and validation
    print("*** Loading input data for training...")

    train_files = create_data_list_of_dictionaries(train_file_list)
    print("Number of inputs for training = {}".format(len(train_files)))

    val_files = create_data_list_of_dictionaries(valid_file_list)
    print("Number of inputs for validation = {}".format(len(val_files)))

    # Define MONAI processing transforms for the training data. This includes:
    # - Load Nifti files and convert to format Batch x Channel x Dim1 x Dim2 x Dim3
    # - CropForegroundd: Reduce the background from the MR image
    # - InPlaneSpacingd: Perform in-plane resampling to the desired spacing, but preserve the resolution along the
    #       last direction (lowest resolution) to avoid introducing motion artefact resampling errors
    # - SpatialPadd: Pad the in-plane size to the defined network input patch size [N, M] if needed
    # - NormalizeIntensityd: Apply whitening
    # - RandSpatialCropd: Crop a random patch from the input with size [B, C, N, M, 1]
    # - SqueezeDimd: Convert the 3D patch to a 2D one as input to the network (i.e. bring it to size [B, C, N, M])
    # - Apply data augmentation (RandZoomd, RandRotated, RandGaussianNoised, RandGaussianSmoothd, RandScaleIntensityd,
    #       RandFlipd)
    # - ToTensor: convert to pytorch tensor
    train_transforms = Compose(
        [
            LoadNiftid(keys=["image", "label"]),
            AddChanneld(keys=["image", "label"]),
            CropForegroundd(keys=["image", "label"], source_key="image"),
            InPlaneSpacingd(
                keys=["image", "label"],
                pixdim=spacing,
                mode=("bilinear", "nearest"),
            ),
            SpatialPadd(keys=["image", "label"], spatial_size=patch_size,
                        mode=["constant", "edge"]),
            NormalizeIntensityd(keys=["image"], nonzero=False, channel_wise=True),
            RandSpatialCropd(keys=["image", "label"], roi_size=patch_size, random_size=False),
            SqueezeDimd(keys=["image", "label"], dim=-1),
            RandZoomd(
                keys=["image", "label"],
                min_zoom=0.9,
                max_zoom=1.2,
                mode=("bilinear", "nearest"),
                align_corners=(True, None),
                prob=0.16,
            ),
            RandRotated(keys=["image", "label"], range_x=90, range_y=90, prob=0.2,
                        keep_size=True, mode=["bilinear", "nearest"],
                        padding_mode=["zeros", "border"]),
            RandGaussianNoised(keys=["image"], std=0.01, prob=0.15),
            RandGaussianSmoothd(
                keys=["image"],
                sigma_x=(0.5, 1.15),
                sigma_y=(0.5, 1.15),
                sigma_z=(0.5, 1.15),
                prob=0.15,
            ),
            RandScaleIntensityd(keys=["image"], factors=0.3, prob=0.15),
            RandFlipd(["image", "label"], spatial_axis=[0, 1], prob=0.5),
            ToTensord(keys=["image", "label"]),
        ]
    )

    # Define MONAI processing transforms for the validation data
    # - Load Nifti files and convert to format Batch x Channel x Dim1 x Dim2 x Dim3
    # - CropForegroundd: Reduce the background from the MR image
    # - InPlaneSpacingd: Perform in-plane resampling to the desired spacing, but preserve the resolution along the
    #       last direction (lowest resolution) to avoid introducing motion artefact resampling errors
    # - SpatialPadd: Pad the in-plane size to the defined network input patch size [N, M] if needed
    # - NormalizeIntensityd: Apply whitening
    # - ToTensor: convert to pytorch tensor
    # NOTE: The validation data is kept 3D as a 2D sliding window approach is used throughout the volume at inference
    val_transforms = Compose(
        [
            LoadNiftid(keys=["image", "label"]),
            AddChanneld(keys=["image", "label"]),
            CropForegroundd(keys=["image", "label"], source_key="image"),
            InPlaneSpacingd(
                keys=["image", "label"],
                pixdim=spacing,
                mode=("bilinear", "nearest"),
            ),
            SpatialPadd(keys=["image", "label"], spatial_size=patch_size, mode=["constant", "edge"]),
            NormalizeIntensityd(keys=["image"], nonzero=False, channel_wise=True),
            ToTensord(keys=["image", "label"]),
        ]
    )

    """
    Load data 
    """
    # create training data loader
    train_ds = PersistentDataset(data=train_files, transform=train_transforms,
                                 cache_dir=persistent_cache)
    train_loader = DataLoader(train_ds,
                              batch_size=config_info['training']['batch_size_train'],
                              shuffle=True,
                              num_workers=config_info['device']['num_workers'])
    check_train_data = misc.first(train_loader)
    print("Training data tensor shapes:")
    print("Image = {}; Label = {}".format(check_train_data["image"].shape, check_train_data["label"].shape))

    # create validation data loader
    if config_info['training']['batch_size_valid'] != 1:
        raise Exception("Batch size different from 1 at validation ar currently not supported")
    val_ds = PersistentDataset(data=val_files, transform=val_transforms, cache_dir=persistent_cache)
    val_loader = DataLoader(val_ds,
                            batch_size=1,
                            shuffle=False,
                            num_workers=config_info['device']['num_workers'])
    check_valid_data = misc.first(val_loader)
    print("Validation data tensor shapes (Example):")
    print("Image = {}; Label = {}\n".format(check_valid_data["image"].shape, check_valid_data["label"].shape))

    """
    Network preparation
    """
    print("*** Preparing the network ...")
    # automatically extracts the strides and kernels based on nnU-Net empirical rules
    spacings = spacing[:2]
    sizes = patch_size[:2]
    strides, kernels = [], []
    while True:
        spacing_ratio = [sp / min(spacings) for sp in spacings]
        stride = [2 if ratio <= 2 and size >= 8 else 1 for (ratio, size) in zip(spacing_ratio, sizes)]
        kernel = [3 if ratio <= 2 else 1 for ratio in spacing_ratio]
        if all(s == 1 for s in stride):
            break
        sizes = [i / j for i, j in zip(sizes, stride)]
        spacings = [i * j for i, j in zip(spacings, stride)]
        kernels.append(kernel)
        strides.append(stride)
    strides.insert(0, len(spacings) * [1])
    kernels.append(len(spacings) * [3])

    # initialise the network
    net = DynUNet(
        spatial_dims=2,
        in_channels=1,
        out_channels=nr_out_channels,
        kernel_size=kernels,
        strides=strides,
        upsample_kernel_size=strides[1:],
        norm_name="instance",
        deep_supervision=True,
        deep_supr_num=2,
        res_block=False,
    ).to(current_device)
    print(net)

    # define the loss function
    loss_function = choose_loss_function(nr_out_channels, config_info)

    # define the optimiser and the learning rate scheduler
    opt = torch.optim.SGD(net.parameters(), lr=float(config_info['training']['lr']), momentum=0.95)
    scheduler = torch.optim.lr_scheduler.LambdaLR(
        opt, lr_lambda=lambda epoch: (1 - epoch / config_info['training']['nr_train_epochs']) ** 0.9
    )

    """
    MONAI evaluator
    """
    print("*** Preparing the dynUNet evaluator engine...\n")
    # val_post_transforms = Compose(
    #     [
    #         Activationsd(keys="pred", sigmoid=True),
    #     ]
    # )
    val_handlers = [
        StatsHandler(output_transform=lambda x: None),
        TensorBoardStatsHandler(log_dir=os.path.join(out_model_dir, "valid"),
                                output_transform=lambda x: None,
                                global_epoch_transform=lambda x: trainer.state.iteration),
        CheckpointSaver(save_dir=out_model_dir, save_dict={"net": net, "opt": opt}, save_key_metric=True,
                        file_prefix='best_valid'),
    ]
    if config_info['output']['val_image_to_tensorboad']:
        val_handlers.append(TensorBoardImageHandler(log_dir=os.path.join(out_model_dir, "valid"),
                                                    batch_transform=lambda x: (x["image"], x["label"]),
                                                    output_transform=lambda x: x["pred"], interval=2))

    # Define customized evaluator
    class DynUNetEvaluator(SupervisedEvaluator):
        def _iteration(self, engine, batchdata):
            inputs, targets = self.prepare_batch(batchdata)
            inputs, targets = inputs.to(engine.state.device), targets.to(engine.state.device)
            flip_inputs_1 = torch.flip(inputs, dims=(2,))
            flip_inputs_2 = torch.flip(inputs, dims=(3,))
            flip_inputs_3 = torch.flip(inputs, dims=(2, 3))

            def _compute_pred():
                pred = self.inferer(inputs, self.network)
                # use random flipping as data augmentation at inference
                flip_pred_1 = torch.flip(self.inferer(flip_inputs_1, self.network), dims=(2,))
                flip_pred_2 = torch.flip(self.inferer(flip_inputs_2, self.network), dims=(3,))
                flip_pred_3 = torch.flip(self.inferer(flip_inputs_3, self.network), dims=(2, 3))
                return (pred + flip_pred_1 + flip_pred_2 + flip_pred_3) / 4

            # execute forward computation
            self.network.eval()
            with torch.no_grad():
                if self.amp:
                    with torch.cuda.amp.autocast():
                        predictions = _compute_pred()
                else:
                    predictions = _compute_pred()
            return {"image": inputs, "label": targets, "pred": predictions}

    evaluator = DynUNetEvaluator(
        device=current_device,
        val_data_loader=val_loader,
        network=net,
        inferer=SlidingWindowInferer2D(roi_size=patch_size, sw_batch_size=4, overlap=0.0),
        post_transform=None,
        key_val_metric={
            "Mean_dice": MeanDice(
                include_background=False,
                to_onehot_y=True,
                mutually_exclusive=True,
                output_transform=lambda x: (x["pred"], x["label"]),
            )
        },
        val_handlers=val_handlers,
        amp=False,
    )

    """
    MONAI trainer
    """
    print("*** Preparing the dynUNet trainer engine...\n")
    # train_post_transforms = Compose(
    #     [
    #         Activationsd(keys="pred", sigmoid=True),
    #     ]
    # )

    validation_every_n_epochs = config_info['training']['validation_every_n_epochs']
    epoch_len = len(train_ds) // train_loader.batch_size
    validation_every_n_iters = validation_every_n_epochs * epoch_len

    # define event handlers for the trainer
    writer_train = SummaryWriter(log_dir=os.path.join(out_model_dir, "train"))
    train_handlers = [
        LrScheduleHandler(lr_scheduler=scheduler, print_lr=True),
        ValidationHandler(validator=evaluator, interval=validation_every_n_iters, epoch_level=False),
        StatsHandler(tag_name="train_loss", output_transform=lambda x: x["loss"]),
        TensorBoardStatsHandler(summary_writer=writer_train,
                                log_dir=os.path.join(out_model_dir, "train"), tag_name="Loss",
                                output_transform=lambda x: x["loss"],
                                global_epoch_transform=lambda x: trainer.state.iteration),
        CheckpointSaver(save_dir=out_model_dir, save_dict={"net": net, "opt": opt},
                        save_final=True,
                        save_interval=2, epoch_level=True,
                        n_saved=config_info['output']['max_nr_models_saved']),
    ]
    if model_to_load is not None:
        train_handlers.append(CheckpointLoader(load_path=model_to_load, load_dict={"net": net, "opt": opt}))

    # define customized trainer
    class DynUNetTrainer(SupervisedTrainer):
        def _iteration(self, engine, batchdata):
            inputs, targets = self.prepare_batch(batchdata)
            inputs, targets = inputs.to(engine.state.device), targets.to(engine.state.device)

            def _compute_loss(preds, label):
                labels = [label] + [interpolate(label, pred.shape[2:]) for pred in preds[1:]]
                return sum([0.5 ** i * self.loss_function(p, l) for i, (p, l) in enumerate(zip(preds, labels))])

            self.network.train()
            self.optimizer.zero_grad()
            if self.amp and self.scaler is not None:
                with torch.cuda.amp.autocast():
                    predictions = self.inferer(inputs, self.network)
                    loss = _compute_loss(predictions, targets)
                self.scaler.scale(loss).backward()
                self.scaler.step(self.optimizer)
                self.scaler.update()
            else:
                predictions = self.inferer(inputs, self.network)
                loss = _compute_loss(predictions, targets).mean()
                loss.backward()
                self.optimizer.step()
            return {"image": inputs, "label": targets, "pred": predictions, "loss": loss.item()}

    trainer = DynUNetTrainer(
        device=current_device,
        max_epochs=config_info['training']['nr_train_epochs'],
        train_data_loader=train_loader,
        network=net,
        optimizer=opt,
        loss_function=loss_function,
        inferer=SimpleInferer(),
        post_transform=None,
        key_train_metric=None,
        train_handlers=train_handlers,
        amp=False,
    )

    """
    Run training
    """
    print("*** Run training...")
    trainer.run()
    print("Done!")
def main(tempdir):
    config.print_config()
    logging.basicConfig(stream=sys.stdout, level=logging.INFO)

    print(f"generating synthetic data to {tempdir} (this may take a while)")
    for i in range(5):
        im, seg = create_test_image_3d(128, 128, 128, num_seg_classes=1)

        n = nib.Nifti1Image(im, np.eye(4))
        nib.save(n, os.path.join(tempdir, f"im{i:d}.nii.gz"))

        n = nib.Nifti1Image(seg, np.eye(4))
        nib.save(n, os.path.join(tempdir, f"seg{i:d}.nii.gz"))

    images = sorted(glob(os.path.join(tempdir, "im*.nii.gz")))
    segs = sorted(glob(os.path.join(tempdir, "seg*.nii.gz")))

    # define transforms for image and segmentation
    imtrans = Compose([ScaleIntensity(), AddChannel(), ToTensor()])
    segtrans = Compose([AddChannel(), ToTensor()])
    ds = ImageDataset(images,
                      segs,
                      transform=imtrans,
                      seg_transform=segtrans,
                      image_only=False)

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    net = UNet(
        dimensions=3,
        in_channels=1,
        out_channels=1,
        channels=(16, 32, 64, 128, 256),
        strides=(2, 2, 2, 2),
        num_res_units=2,
    ).to(device)

    # define sliding window size and batch size for windows inference
    roi_size = (96, 96, 96)
    sw_batch_size = 4

    post_trans = Compose(
        [Activations(sigmoid=True),
         AsDiscrete(threshold_values=True)])

    def _sliding_window_processor(engine, batch):
        net.eval()
        with torch.no_grad():
            val_images, val_labels = batch[0].to(device), batch[1].to(device)
            seg_probs = sliding_window_inference(val_images, roi_size,
                                                 sw_batch_size, net)
            seg_probs = post_trans(seg_probs)
            return seg_probs, val_labels

    evaluator = Engine(_sliding_window_processor)

    # add evaluation metric to the evaluator engine
    MeanDice().attach(evaluator, "Mean_Dice")

    # StatsHandler prints loss at every iteration and print metrics at every epoch,
    # we don't need to print loss for evaluator, so just print metrics, user can also customize print functions
    val_stats_handler = StatsHandler(
        name="evaluator",
        output_transform=lambda x:
        None,  # no need to print loss value, so disable per iteration output
    )
    val_stats_handler.attach(evaluator)

    # for the array data format, assume the 3rd item of batch data is the meta_data
    file_saver = SegmentationSaver(
        output_dir="tempdir",
        output_ext=".nii.gz",
        output_postfix="seg",
        name="evaluator",
        batch_transform=lambda x: x[2],
        output_transform=lambda output: output[0],
    )
    file_saver.attach(evaluator)

    # the model was trained by "unet_training_array" example
    ckpt_saver = CheckpointLoader(
        load_path="./runs_array/net_checkpoint_100.pt", load_dict={"net": net})
    ckpt_saver.attach(evaluator)

    # sliding window inference for one image at every iteration
    loader = DataLoader(ds,
                        batch_size=1,
                        num_workers=1,
                        pin_memory=torch.cuda.is_available())
    state = evaluator.run(loader)
    print(state)
    AddChanneld,
    Compose,
    CropForegroundd,
    LoadImaged,
    KeepLargestConnectedComponent,
    LabelToContour,
    Orientationd,
    RandCropByPosNegLabeld,
    ScaleIntensityRanged,
    Spacingd,
    ToTensord,
)
from monai.utils import first, set_determinism
from numpy import math

print_config()
print("KIDNEYS")
"""## Setup data directory

You can specify a directory with the `MONAI_DATA_DIRECTORY` environment variable.  
This allows you to save results and reuse downloads.  
If not specified a temporary directory will be used.
"""
"""## Download dataset

Downloads and extracts the dataset.  
The dataset comes from http://medicaldecathlon.com/.
"""

md5 = "410d4a301da4e5b2f6f86ec3ddba524e"
def main():
    config.print_config()
    logging.basicConfig(stream=sys.stdout, level=logging.INFO)

    tempdir = tempfile.mkdtemp()
    print('generating synthetic data to {} (this may take a while)'.format(tempdir))
    for i in range(5):
        im, seg = create_test_image_3d(128, 128, 128, num_seg_classes=1)

        n = nib.Nifti1Image(im, np.eye(4))
        nib.save(n, os.path.join(tempdir, 'im%i.nii.gz' % i))

        n = nib.Nifti1Image(seg, np.eye(4))
        nib.save(n, os.path.join(tempdir, 'seg%i.nii.gz' % i))

    images = sorted(glob(os.path.join(tempdir, 'im*.nii.gz')))
    segs = sorted(glob(os.path.join(tempdir, 'seg*.nii.gz')))

    # define transforms for image and segmentation
    imtrans = Compose([ScaleIntensity(), AddChannel(), ToTensor()])
    segtrans = Compose([AddChannel(), ToTensor()])
    ds = NiftiDataset(images, segs, transform=imtrans, seg_transform=segtrans, image_only=False)

    device = torch.device('cuda:0')
    net = UNet(
        dimensions=3,
        in_channels=1,
        out_channels=1,
        channels=(16, 32, 64, 128, 256),
        strides=(2, 2, 2, 2),
        num_res_units=2,
    )
    net.to(device)

    # define sliding window size and batch size for windows inference
    roi_size = (96, 96, 96)
    sw_batch_size = 4


    def _sliding_window_processor(engine, batch):
        net.eval()
        with torch.no_grad():
            val_images, val_labels = batch[0].to(device), batch[1].to(device)
            seg_probs = sliding_window_inference(val_images, roi_size, sw_batch_size, net)
            return seg_probs, val_labels


    evaluator = Engine(_sliding_window_processor)

    # add evaluation metric to the evaluator engine
    MeanDice(add_sigmoid=True, to_onehot_y=False).attach(evaluator, 'Mean_Dice')

    # StatsHandler prints loss at every iteration and print metrics at every epoch,
    # we don't need to print loss for evaluator, so just print metrics, user can also customize print functions
    val_stats_handler = StatsHandler(
        name='evaluator',
        output_transform=lambda x: None  # no need to print loss value, so disable per iteration output
    )
    val_stats_handler.attach(evaluator)

    # for the array data format, assume the 3rd item of batch data is the meta_data
    file_saver = SegmentationSaver(
        output_dir='tempdir', output_ext='.nii.gz', output_postfix='seg', name='evaluator',
        batch_transform=lambda x: x[2], output_transform=lambda output: predict_segmentation(output[0]))
    file_saver.attach(evaluator)

    # the model was trained by "unet_training_array" example
    ckpt_saver = CheckpointLoader(load_path='./runs/net_checkpoint_50.pth', load_dict={'net': net})
    ckpt_saver.attach(evaluator)

    # sliding window inference for one image at every iteration
    loader = DataLoader(ds, batch_size=1, num_workers=1, pin_memory=torch.cuda.is_available())
    state = evaluator.run(loader)
    shutil.rmtree(tempdir)
Exemple #9
0
def main():
    print_config()

    # Define paths for running the script
    data_dir = os.path.normpath('/to/be/defined')
    json_path = os.path.normpath('/to/be/defined')
    logdir = os.path.normpath('/to/be/defined')

    # If use_pretrained is set to 0, ViT weights will not be loaded and random initialization is used
    use_pretrained = 1
    pretrained_path = os.path.normpath('/to/be/defined')

    # Training Hyper-parameters
    lr = 1e-4
    max_iterations = 30000
    eval_num = 100

    if os.path.exists(logdir) == False:
        os.mkdir(logdir)

    # Training & Validation Transform chain
    train_transforms = Compose([
        LoadImaged(keys=["image", "label"]),
        AddChanneld(keys=["image", "label"]),
        Spacingd(
            keys=["image", "label"],
            pixdim=(1.5, 1.5, 2.0),
            mode=("bilinear", "nearest"),
        ),
        Orientationd(keys=["image", "label"], axcodes="RAS"),
        ScaleIntensityRanged(
            keys=["image"],
            a_min=-175,
            a_max=250,
            b_min=0.0,
            b_max=1.0,
            clip=True,
        ),
        CropForegroundd(keys=["image", "label"], source_key="image"),
        RandCropByPosNegLabeld(
            keys=["image", "label"],
            label_key="label",
            spatial_size=(96, 96, 96),
            pos=1,
            neg=1,
            num_samples=4,
            image_key="image",
            image_threshold=0,
        ),
        RandFlipd(
            keys=["image", "label"],
            spatial_axis=[0],
            prob=0.10,
        ),
        RandFlipd(
            keys=["image", "label"],
            spatial_axis=[1],
            prob=0.10,
        ),
        RandFlipd(
            keys=["image", "label"],
            spatial_axis=[2],
            prob=0.10,
        ),
        RandRotate90d(
            keys=["image", "label"],
            prob=0.10,
            max_k=3,
        ),
        RandShiftIntensityd(
            keys=["image"],
            offsets=0.10,
            prob=0.50,
        ),
        ToTensord(keys=["image", "label"]),
    ])
    val_transforms = Compose([
        LoadImaged(keys=["image", "label"]),
        AddChanneld(keys=["image", "label"]),
        Spacingd(
            keys=["image", "label"],
            pixdim=(1.5, 1.5, 2.0),
            mode=("bilinear", "nearest"),
        ),
        Orientationd(keys=["image", "label"], axcodes="RAS"),
        ScaleIntensityRanged(keys=["image"],
                             a_min=-175,
                             a_max=250,
                             b_min=0.0,
                             b_max=1.0,
                             clip=True),
        CropForegroundd(keys=["image", "label"], source_key="image"),
        ToTensord(keys=["image", "label"]),
    ])

    datalist = load_decathlon_datalist(base_dir=data_dir,
                                       data_list_file_path=json_path,
                                       is_segmentation=True,
                                       data_list_key="training")

    val_files = load_decathlon_datalist(base_dir=data_dir,
                                        data_list_file_path=json_path,
                                        is_segmentation=True,
                                        data_list_key="validation")
    train_ds = CacheDataset(
        data=datalist,
        transform=train_transforms,
        cache_num=24,
        cache_rate=1.0,
        num_workers=4,
    )
    train_loader = DataLoader(train_ds,
                              batch_size=1,
                              shuffle=True,
                              num_workers=4,
                              pin_memory=True)
    val_ds = CacheDataset(data=val_files,
                          transform=val_transforms,
                          cache_num=6,
                          cache_rate=1.0,
                          num_workers=4)
    val_loader = DataLoader(val_ds,
                            batch_size=1,
                            shuffle=False,
                            num_workers=4,
                            pin_memory=True)

    case_num = 0
    img = val_ds[case_num]["image"]
    label = val_ds[case_num]["label"]
    img_shape = img.shape
    label_shape = label.shape
    print(f"image shape: {img_shape}, label shape: {label_shape}")

    os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    model = UNETR(
        in_channels=1,
        out_channels=14,
        img_size=(96, 96, 96),
        feature_size=16,
        hidden_size=768,
        mlp_dim=3072,
        num_heads=12,
        pos_embed="conv",
        norm_name="instance",
        res_block=True,
        dropout_rate=0.0,
    )

    # Load ViT backbone weights into UNETR
    if use_pretrained == 1:
        print('Loading Weights from the Path {}'.format(pretrained_path))
        vit_dict = torch.load(pretrained_path)
        vit_weights = vit_dict['state_dict']

        #  Delete the following variable names conv3d_transpose.weight, conv3d_transpose.bias,
        #  conv3d_transpose_1.weight, conv3d_transpose_1.bias as they were used to match dimensions
        #  while pretraining with ViTAutoEnc and are not a part of ViT backbone (this is used in UNETR)
        vit_weights.pop('conv3d_transpose_1.bias')
        vit_weights.pop('conv3d_transpose_1.weight')
        vit_weights.pop('conv3d_transpose.bias')
        vit_weights.pop('conv3d_transpose.weight')

        model.vit.load_state_dict(vit_weights)
        print('Pretrained Weights Succesfully Loaded !')

    elif use_pretrained == 0:
        print(
            'No weights were loaded, all weights being used are randomly initialized!'
        )

    model.to(device)

    loss_function = DiceCELoss(to_onehot_y=True, softmax=True)
    torch.backends.cudnn.benchmark = True
    optimizer = torch.optim.AdamW(model.parameters(), lr=lr, weight_decay=1e-5)

    post_label = AsDiscrete(to_onehot=14)
    post_pred = AsDiscrete(argmax=True, to_onehot=14)
    dice_metric = DiceMetric(include_background=True,
                             reduction="mean",
                             get_not_nans=False)
    global_step = 0
    dice_val_best = 0.0
    global_step_best = 0
    epoch_loss_values = []
    metric_values = []

    def validation(epoch_iterator_val):
        model.eval()
        dice_vals = list()

        with torch.no_grad():
            for step, batch in enumerate(epoch_iterator_val):
                val_inputs, val_labels = (batch["image"].cuda(),
                                          batch["label"].cuda())
                val_outputs = sliding_window_inference(val_inputs,
                                                       (96, 96, 96), 4, model)
                val_labels_list = decollate_batch(val_labels)
                val_labels_convert = [
                    post_label(val_label_tensor)
                    for val_label_tensor in val_labels_list
                ]
                val_outputs_list = decollate_batch(val_outputs)
                val_output_convert = [
                    post_pred(val_pred_tensor)
                    for val_pred_tensor in val_outputs_list
                ]
                dice_metric(y_pred=val_output_convert, y=val_labels_convert)
                dice = dice_metric.aggregate().item()
                dice_vals.append(dice)
                epoch_iterator_val.set_description(
                    "Validate (%d / %d Steps) (dice=%2.5f)" %
                    (global_step, 10.0, dice))

            dice_metric.reset()

        mean_dice_val = np.mean(dice_vals)
        return mean_dice_val

    def train(global_step, train_loader, dice_val_best, global_step_best):
        model.train()
        epoch_loss = 0
        step = 0
        epoch_iterator = tqdm(train_loader,
                              desc="Training (X / X Steps) (loss=X.X)",
                              dynamic_ncols=True)
        for step, batch in enumerate(epoch_iterator):
            step += 1
            x, y = (batch["image"].cuda(), batch["label"].cuda())
            logit_map = model(x)
            loss = loss_function(logit_map, y)
            loss.backward()
            epoch_loss += loss.item()
            optimizer.step()
            optimizer.zero_grad()
            epoch_iterator.set_description(
                "Training (%d / %d Steps) (loss=%2.5f)" %
                (global_step, max_iterations, loss))

            if (global_step % eval_num == 0
                    and global_step != 0) or global_step == max_iterations:
                epoch_iterator_val = tqdm(
                    val_loader,
                    desc="Validate (X / X Steps) (dice=X.X)",
                    dynamic_ncols=True)
                dice_val = validation(epoch_iterator_val)

                epoch_loss /= step
                epoch_loss_values.append(epoch_loss)
                metric_values.append(dice_val)
                if dice_val > dice_val_best:
                    dice_val_best = dice_val
                    global_step_best = global_step
                    torch.save(model.state_dict(),
                               os.path.join(logdir, "best_metric_model.pth"))
                    print(
                        "Model Was Saved ! Current Best Avg. Dice: {} Current Avg. Dice: {}"
                        .format(dice_val_best, dice_val))
                else:
                    print(
                        "Model Was Not Saved ! Current Best Avg. Dice: {} Current Avg. Dice: {}"
                        .format(dice_val_best, dice_val))

                plt.figure(1, (12, 6))
                plt.subplot(1, 2, 1)
                plt.title("Iteration Average Loss")
                x = [eval_num * (i + 1) for i in range(len(epoch_loss_values))]
                y = epoch_loss_values
                plt.xlabel("Iteration")
                plt.plot(x, y)
                plt.grid()
                plt.subplot(1, 2, 2)
                plt.title("Val Mean Dice")
                x = [eval_num * (i + 1) for i in range(len(metric_values))]
                y = metric_values
                plt.xlabel("Iteration")
                plt.plot(x, y)
                plt.grid()
                plt.savefig(
                    os.path.join(logdir, 'btcv_finetune_quick_update.png'))
                plt.clf()
                plt.close(1)

            global_step += 1
        return global_step, dice_val_best, global_step_best

    while global_step < max_iterations:
        global_step, dice_val_best, global_step_best = train(
            global_step, train_loader, dice_val_best, global_step_best)
    model.load_state_dict(
        torch.load(os.path.join(logdir, "best_metric_model.pth")))

    print(f"train completed, best_metric: {dice_val_best:.4f} "
          f"at iteration: {global_step_best}")
Exemple #10
0
def main(train_output):
    logging.basicConfig(stream=sys.stdout, level=logging.INFO)
    print_config()

    # Setup directories
    dirs = setup_directories()

    # Setup torch device
    device, using_gpu = create_device("cuda")

    # Load and randomize images

    # HACKATON image and segmentation data
    hackathon_dir = os.path.join(dirs["data"], 'HACKATHON')
    map_fn = lambda x: (x[0], int(x[1]))
    with open(os.path.join(hackathon_dir, "train.txt"), 'r') as fp:
        train_info_hackathon = [
            map_fn(entry.strip().split(',')) for entry in fp.readlines()
        ]
    image_dir = os.path.join(hackathon_dir, 'images', 'train')
    seg_dir = os.path.join(hackathon_dir, 'segmentations', 'train')
    _train_data_hackathon = get_data_from_info(image_dir,
                                               seg_dir,
                                               train_info_hackathon,
                                               dual_output=False)
    large_image_splitter(_train_data_hackathon, dirs["cache"])

    balance_training_data(_train_data_hackathon, seed=72)

    # PSUF data
    """psuf_dir = os.path.join(dirs["data"], 'psuf')
    with open(os.path.join(psuf_dir, "train.txt"), 'r') as fp:
        train_info = [entry.strip().split(',') for entry in fp.readlines()]
    image_dir = os.path.join(psuf_dir, 'images')
    train_data_psuf = get_data_from_info(image_dir, None, train_info)"""
    # Split data into train, validate and test
    train_split, test_data_hackathon = train_test_split(_train_data_hackathon,
                                                        test_size=0.2,
                                                        shuffle=True,
                                                        random_state=42)
    #train_data_hackathon, valid_data_hackathon = train_test_split(train_split, test_size=0.2, shuffle=True, random_state=43)
    # Setup transforms

    # Crop foreground
    crop_foreground = CropForegroundd(
        keys=["image"],
        source_key="image",
        margin=(5, 5, 0),
        #select_fn = lambda x: x != 0
    )
    # Crop Z
    crop_z = RelativeCropZd(keys=["image"], relative_z_roi=(0.07, 0.12))
    # Window width and level (window center)
    WW, WL = 1500, -600
    ct_window = CTWindowd(keys=["image"], width=WW, level=WL)
    spatial_pad = SpatialPadd(keys=["image"], spatial_size=(-1, -1, 30))
    resize = Resized(keys=["image"],
                     spatial_size=(int(512 * 0.50), int(512 * 0.50), -1),
                     mode="trilinear")

    # Create transforms
    common_transform = Compose([
        LoadImaged(keys=["image"]),
        ct_window,
        CTSegmentation(keys=["image"]),
        AddChanneld(keys=["image"]),
        resize,
        crop_foreground,
        crop_z,
        spatial_pad,
    ])
    hackathon_train_transfrom = Compose([
        common_transform,
        ToTensord(keys=["image"]),
    ]).flatten()
    psuf_transforms = Compose([
        LoadImaged(keys=["image"]),
        AddChanneld(keys=["image"]),
        ToTensord(keys=["image"]),
    ])

    # Setup data
    #set_determinism(seed=100)
    test_dataset = PersistentDataset(data=test_data_hackathon[:],
                                     transform=hackathon_train_transfrom,
                                     cache_dir=dirs["persistent"])
    test_loader = DataLoader(test_dataset,
                             batch_size=2,
                             shuffle=True,
                             pin_memory=using_gpu,
                             num_workers=1,
                             collate_fn=PadListDataCollate(
                                 Method.SYMMETRIC, NumpyPadMode.CONSTANT))

    # Setup network, loss function, optimizer and scheduler
    network = nets.DenseNet121(spatial_dims=3, in_channels=1,
                               out_channels=1).to(device)

    # Setup validator and trainer
    valid_post_transforms = Compose([
        Activationsd(keys="pred", sigmoid=True),
    ])

    # Setup tester
    tester = Tester(device=device,
                    test_data_loader=test_loader,
                    load_dir=train_output,
                    out_dir=dirs["out"],
                    network=network,
                    post_transform=valid_post_transforms,
                    non_blocking=using_gpu,
                    amp=using_gpu)

    # Run tester
    tester.run()
def run_inference(input_data, config_info):
    """
    Pipeline to run inference with MONAI dynUNet model. The pipeline reads the input filenames, applies the required
    preprocessing and creates the pytorch dataloader; it then performs evaluation on each input file using a trained
    dynUNet model (random flipping augmentation is applied at inference).
    It uses the dynUNet model implemented in the MONAI framework
    (https://github.com/Project-MONAI/MONAI/blob/master/monai/networks/nets/dynunet.py)
    which is inspired by the nnU-Net framework (https://arxiv.org/abs/1809.10486)
    Inference is performed in 2D slice-by-slice, all slices are then recombined together into the 3D volume.

    Args:
        input_data: str or list of strings, filenames of images to be processed
        config_info: dict, contains the configuration parameters to reload the trained model

    """
    """
    Read input and configuration parameters
    """

    val_files = create_data_list_of_dictionaries(input_data)

    # print MONAI config information
    logging.basicConfig(stream=sys.stdout, level=logging.INFO)
    print("*** MONAI config: ")
    print_config()

    # print to log the parameter setups
    print("*** Network inference config: ")
    print(yaml.dump(config_info))

    # inference params
    nr_out_channels = config_info['inference']['nr_out_channels']
    spacing = config_info["inference"]["spacing"]
    prob_thr = config_info['inference']['probability_threshold']
    model_to_load = config_info['inference']['model_to_load']
    if not os.path.exists(model_to_load):
        raise FileNotFoundError('Trained model not found')
    patch_size = config_info["inference"]["inplane_size"] + [1]
    print("Considering patch size = {}".format(patch_size))

    # set up either GPU or CPU usage
    if torch.cuda.is_available():
        print("\n#### GPU INFORMATION ###")
        print("Using device number: {}, name: {}".format(
            torch.cuda.current_device(), torch.cuda.get_device_name()))
        current_device = torch.device("cuda:0")
    else:
        current_device = torch.device("cpu")
        print("Using device: {}".format(current_device))
    """
    Data Preparation
    """
    print("***  Preparing data ... ")
    # data preprocessing for inference:
    # - convert data to right format [batch, channel, dim, dim, dim]
    # - resample to the training resolution in-plane (not along z)
    # - apply whitening
    # - convert to tensor
    val_transforms = Compose([
        LoadNiftid(keys=["image"]),
        AddChanneld(keys=["image"]),
        InPlaneSpacingd(
            keys=["image"],
            pixdim=spacing,
            mode="bilinear",
        ),
        NormalizeIntensityd(keys=["image"], nonzero=False, channel_wise=True),
        ToTensord(keys=["image"]),
    ])
    # create a validation data loader
    val_ds = Dataset(data=val_files, transform=val_transforms)
    val_loader = DataLoader(val_ds,
                            batch_size=1,
                            num_workers=config_info['device']['num_workers'])

    def prepare_batch(batchdata):
        assert isinstance(batchdata,
                          dict), "prepare_batch expects dictionary input data."
        return ((batchdata["image"],
                 batchdata["label"]) if "label" in batchdata else
                (batchdata["image"], None))

    """
    Network preparation
    """
    print("***  Preparing network ... ")
    # automatically extracts the strides and kernels based on nnU-Net empirical rules
    spacings = spacing[:2]
    sizes = patch_size[:2]
    strides, kernels = [], []
    while True:
        spacing_ratio = [sp / min(spacings) for sp in spacings]
        stride = [
            2 if ratio <= 2 and size >= 8 else 1
            for (ratio, size) in zip(spacing_ratio, sizes)
        ]
        kernel = [3 if ratio <= 2 else 1 for ratio in spacing_ratio]
        if all(s == 1 for s in stride):
            break
        sizes = [i / j for i, j in zip(sizes, stride)]
        spacings = [i * j for i, j in zip(spacings, stride)]
        kernels.append(kernel)
        strides.append(stride)
    strides.insert(0, len(spacings) * [1])
    kernels.append(len(spacings) * [3])

    net = DynUNet(spatial_dims=2,
                  in_channels=1,
                  out_channels=nr_out_channels,
                  kernel_size=kernels,
                  strides=strides,
                  upsample_kernel_size=strides[1:],
                  norm_name="instance",
                  deep_supervision=True,
                  deep_supr_num=2,
                  res_block=False).to(current_device)
    """
    Set ignite evaluator to perform inference
    """
    print("***  Preparing evaluator ... ")
    if nr_out_channels == 1:
        do_sigmoid = True
        do_softmax = False
    elif nr_out_channels > 1:
        do_sigmoid = False
        do_softmax = True
    else:
        raise Exception("incompatible number of output channels")
    print("Using sigmoid={} and softmax={} as final activation".format(
        do_sigmoid, do_softmax))
    val_post_transforms = Compose([
        Activationsd(keys="pred", sigmoid=do_sigmoid, softmax=do_softmax),
        AsDiscreted(keys="pred",
                    argmax=True,
                    threshold_values=True,
                    logit_thresh=prob_thr),
        KeepLargestConnectedComponentd(keys="pred", applied_labels=1)
    ])
    val_handlers = [
        StatsHandler(output_transform=lambda x: None),
        CheckpointLoader(load_path=model_to_load,
                         load_dict={"net": net},
                         map_location=torch.device('cpu')),
        SegmentationSaver(
            output_dir=config_info['output']['out_dir'],
            output_ext='.nii.gz',
            output_postfix=config_info['output']['out_postfix'],
            batch_transform=lambda batch: batch["image_meta_dict"],
            output_transform=lambda output: output["pred"],
        ),
    ]

    # Define customized evaluator
    class DynUNetEvaluator(SupervisedEvaluator):
        def _iteration(self, engine, batchdata):
            inputs, targets = self.prepare_batch(batchdata)
            inputs = inputs.to(engine.state.device)
            if targets is not None:
                targets = targets.to(engine.state.device)
            flip_inputs_1 = torch.flip(inputs, dims=(2, ))
            flip_inputs_2 = torch.flip(inputs, dims=(3, ))
            flip_inputs_3 = torch.flip(inputs, dims=(2, 3))

            def _compute_pred():
                pred = self.inferer(inputs, self.network)
                # use random flipping as data augmentation at inference
                flip_pred_1 = torch.flip(self.inferer(flip_inputs_1,
                                                      self.network),
                                         dims=(2, ))
                flip_pred_2 = torch.flip(self.inferer(flip_inputs_2,
                                                      self.network),
                                         dims=(3, ))
                flip_pred_3 = torch.flip(self.inferer(flip_inputs_3,
                                                      self.network),
                                         dims=(2, 3))
                return (pred + flip_pred_1 + flip_pred_2 + flip_pred_3) / 4

            # execute forward computation
            self.network.eval()
            with torch.no_grad():
                if self.amp:
                    with torch.cuda.amp.autocast():
                        predictions = _compute_pred()
                else:
                    predictions = _compute_pred()
            return {"image": inputs, "label": targets, "pred": predictions}

    evaluator = DynUNetEvaluator(
        device=current_device,
        val_data_loader=val_loader,
        network=net,
        prepare_batch=prepare_batch,
        inferer=SlidingWindowInferer2D(roi_size=patch_size,
                                       sw_batch_size=4,
                                       overlap=0.0),
        post_transform=val_post_transforms,
        val_handlers=val_handlers,
        amp=False,
    )
    """
    Run inference
    """
    print("***  Running evaluator ... ")
    evaluator.run()
    print("Done!")

    return
Exemple #12
0
def main(tempdir):
    print_config()
    logging.basicConfig(stream=sys.stdout, level=logging.INFO)

    print(f"generating synthetic data to {tempdir} (this may take a while)")
    for i in range(5):
        im, _ = create_test_image_3d(128,
                                     128,
                                     128,
                                     num_seg_classes=1,
                                     channel_dim=-1)
        n = nib.Nifti1Image(im, np.eye(4))
        nib.save(n, os.path.join(tempdir, f"im{i:d}.nii.gz"))

    images = sorted(glob(os.path.join(tempdir, "im*.nii.gz")))
    files = [{"img": img} for img in images]

    # define pre transforms
    pre_transforms = Compose([
        LoadImaged(keys="img"),
        EnsureChannelFirstd(keys="img"),
        Orientationd(keys="img", axcodes="RAS"),
        Resized(keys="img",
                spatial_size=(96, 96, 96),
                mode="trilinear",
                align_corners=True),
        ScaleIntensityd(keys="img"),
        EnsureTyped(keys="img"),
    ])
    # define dataset and dataloader
    dataset = Dataset(data=files, transform=pre_transforms)
    dataloader = DataLoader(dataset, batch_size=2, num_workers=4)
    # define post transforms
    post_transforms = Compose([
        EnsureTyped(keys="pred"),
        Activationsd(keys="pred", sigmoid=True),
        Invertd(
            keys=
            "pred",  # invert the `pred` data field, also support multiple fields
            transform=pre_transforms,
            orig_keys=
            "img",  # get the previously applied pre_transforms information on the `img` data field,
            # then invert `pred` based on this information. we can use same info
            # for multiple fields, also support different orig_keys for different fields
            meta_keys=
            "pred_meta_dict",  # key field to save inverted meta data, every item maps to `keys`
            orig_meta_keys=
            "img_meta_dict",  # get the meta data from `img_meta_dict` field when inverting,
            # for example, may need the `affine` to invert `Spacingd` transform,
            # multiple fields can use the same meta data to invert
            meta_key_postfix=
            "meta_dict",  # if `meta_keys=None`, use "{keys}_{meta_key_postfix}" as the meta key,
            # if `orig_meta_keys=None`, use "{orig_keys}_{meta_key_postfix}",
            # otherwise, no need this arg during inverting
            nearest_interp=
            False,  # don't change the interpolation mode to "nearest" when inverting transforms
            # to ensure a smooth output, then execute `AsDiscreted` transform
            to_tensor=True,  # convert to PyTorch Tensor after inverting
        ),
        AsDiscreted(keys="pred", threshold=0.5),
        SaveImaged(keys="pred",
                   meta_keys="pred_meta_dict",
                   output_dir="./out",
                   output_postfix="seg",
                   resample=False),
    ])

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    net = UNet(
        spatial_dims=3,
        in_channels=1,
        out_channels=1,
        channels=(16, 32, 64, 128, 256),
        strides=(2, 2, 2, 2),
        num_res_units=2,
    ).to(device)
    net.load_state_dict(
        torch.load("best_metric_model_segmentation3d_dict.pth"))

    net.eval()
    with torch.no_grad():
        for d in dataloader:
            images = d["img"].to(device)
            # define sliding window size and batch size for windows inference
            d["pred"] = sliding_window_inference(inputs=images,
                                                 roi_size=(96, 96, 96),
                                                 sw_batch_size=4,
                                                 predictor=net)
            # decollate the batch data into a list of dictionaries, then execute postprocessing transforms
            d = [post_transforms(i) for i in decollate_batch(d)]
def main(tempdir):
    print_config()
    logging.basicConfig(stream=sys.stdout, level=logging.INFO)

    print(f"generating synthetic data to {tempdir} (this may take a while)")
    for i in range(5):
        im, _ = create_test_image_3d(128,
                                     128,
                                     128,
                                     num_seg_classes=1,
                                     channel_dim=-1)
        n = nib.Nifti1Image(im, np.eye(4))
        nib.save(n, os.path.join(tempdir, f"im{i:d}.nii.gz"))

    images = sorted(glob(os.path.join(tempdir, "im*.nii.gz")))
    files = [{"img": img} for img in images]

    # define pre transforms
    pre_transforms = Compose([
        LoadImaged(keys="img"),
        EnsureChannelFirstd(keys="img"),
        Orientationd(keys="img", axcodes="RAS"),
        Resized(keys="img",
                spatial_size=(96, 96, 96),
                mode="trilinear",
                align_corners=True),
        ScaleIntensityd(keys="img"),
        ToTensord(keys="img"),
    ])
    # define dataset and dataloader
    dataset = Dataset(data=files, transform=pre_transforms)
    dataloader = DataLoader(dataset, batch_size=2, num_workers=4)
    # define post transforms
    post_transforms = Compose([
        Activationsd(keys="pred", sigmoid=True),
        AsDiscreted(keys="pred", threshold_values=True),
        Invertd(keys="pred",
                transform=pre_transforms,
                loader=dataloader,
                orig_keys="img",
                nearest_interp=True),
        SaveImaged(keys="pred_inverted",
                   output_dir="./output",
                   output_postfix="seg",
                   resample=False),
    ])

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    net = UNet(
        dimensions=3,
        in_channels=1,
        out_channels=1,
        channels=(16, 32, 64, 128, 256),
        strides=(2, 2, 2, 2),
        num_res_units=2,
    ).to(device)
    net.load_state_dict(
        torch.load("best_metric_model_segmentation3d_dict.pth"))

    net.eval()
    with torch.no_grad():
        for d in dataloader:
            images = d["img"].to(device)
            # define sliding window size and batch size for windows inference
            d["pred"] = sliding_window_inference(inputs=images,
                                                 roi_size=(96, 96, 96),
                                                 sw_batch_size=4,
                                                 predictor=net)
            # execute post transforms to invert spatial transforms and save to NIfTI files
            post_transforms(d)
Exemple #14
0
def main():
    logging.basicConfig(stream=sys.stdout, level=logging.INFO)
    print_config()

    # Setup directories
    dirs = setup_directories()

    # Setup torch device
    device, using_gpu = create_device("cuda")

    # Load and randomize images

    # HACKATON image and segmentation data
    hackathon_dir = os.path.join(dirs["data"], 'HACKATHON')
    map_fn = lambda x: (x[0], int(x[1]))
    with open(os.path.join(hackathon_dir, "train.txt"), 'r') as fp:
        train_info_hackathon = [
            map_fn(entry.strip().split(',')) for entry in fp.readlines()
        ]
    image_dir = os.path.join(hackathon_dir, 'images', 'train')
    seg_dir = os.path.join(hackathon_dir, 'segmentations', 'train')
    _train_data_hackathon = get_data_from_info(image_dir,
                                               seg_dir,
                                               train_info_hackathon,
                                               dual_output=False)
    _train_data_hackathon = large_image_splitter(_train_data_hackathon,
                                                 dirs["cache"])
    copy_list = transform_and_copy(_train_data_hackathon, dirs['cache'])
    balance_training_data2(_train_data_hackathon, copy_list, seed=72)

    # PSUF data
    """psuf_dir = os.path.join(dirs["data"], 'psuf')
    with open(os.path.join(psuf_dir, "train.txt"), 'r') as fp:
        train_info = [entry.strip().split(',') for entry in fp.readlines()]
    image_dir = os.path.join(psuf_dir, 'images')
    train_data_psuf = get_data_from_info(image_dir, None, train_info)"""
    # Split data into train, validate and test
    train_split, test_data_hackathon = train_test_split(_train_data_hackathon,
                                                        test_size=0.2,
                                                        shuffle=True,
                                                        random_state=42)
    train_data_hackathon, valid_data_hackathon = train_test_split(
        train_split, test_size=0.2, shuffle=True, random_state=43)

    #balance_training_data(train_data_hackathon, seed=72)
    #balance_training_data(valid_data_hackathon, seed=73)
    #balance_training_data(test_data_hackathon, seed=74)
    # Setup transforms

    # Crop foreground
    crop_foreground = CropForegroundd(keys=["image"],
                                      source_key="image",
                                      margin=(5, 5, 0),
                                      select_fn=lambda x: x != 0)
    # Crop Z
    crop_z = RelativeCropZd(keys=["image"], relative_z_roi=(0.07, 0.12))
    # Window width and level (window center)
    WW, WL = 1500, -600
    ct_window = CTWindowd(keys=["image"], width=WW, level=WL)
    # Random axis flip
    rand_x_flip = RandFlipd(keys=["image"], spatial_axis=0, prob=0.50)
    rand_y_flip = RandFlipd(keys=["image"], spatial_axis=1, prob=0.50)
    rand_z_flip = RandFlipd(keys=["image"], spatial_axis=2, prob=0.50)
    # Rand affine transform
    rand_affine = RandAffined(keys=["image"],
                              prob=0.5,
                              rotate_range=(0, 0, np.pi / 12),
                              shear_range=(0.07, 0.07, 0.0),
                              translate_range=(0, 0, 0),
                              scale_range=(0.07, 0.07, 0.0),
                              padding_mode="zeros")
    # Pad image to have hight at least 30
    spatial_pad = SpatialPadd(keys=["image"], spatial_size=(-1, -1, 30))
    resize = Resized(keys=["image"],
                     spatial_size=(int(512 * 0.50), int(512 * 0.50), -1),
                     mode="trilinear")
    # Apply Gaussian noise
    rand_gaussian_noise = RandGaussianNoised(keys=["image"],
                                             prob=0.25,
                                             mean=0.0,
                                             std=0.1)

    # Create transforms
    common_transform = Compose([
        LoadImaged(keys=["image"]),
        ct_window,
        CTSegmentation(keys=["image"]),
        AddChanneld(keys=["image"]),
        resize,
        crop_foreground,
        crop_z,
        spatial_pad,
    ])
    hackathon_train_transform = Compose([
        common_transform,
        rand_x_flip,
        rand_y_flip,
        rand_z_flip,
        rand_affine,
        rand_gaussian_noise,
        ToTensord(keys=["image"]),
    ]).flatten()
    hackathon_valid_transfrom = Compose([
        common_transform,
        #rand_x_flip,
        #rand_y_flip,
        #rand_z_flip,
        #rand_affine,
        ToTensord(keys=["image"]),
    ]).flatten()
    hackathon_test_transfrom = Compose([
        common_transform,
        ToTensord(keys=["image"]),
    ]).flatten()
    psuf_transforms = Compose([
        LoadImaged(keys=["image"]),
        AddChanneld(keys=["image"]),
        ToTensord(keys=["image"]),
    ])

    # Setup data
    #set_determinism(seed=100)
    train_dataset = PersistentDataset(data=train_data_hackathon[:],
                                      transform=hackathon_train_transform,
                                      cache_dir=dirs["persistent"])
    valid_dataset = PersistentDataset(data=valid_data_hackathon[:],
                                      transform=hackathon_valid_transfrom,
                                      cache_dir=dirs["persistent"])
    test_dataset = PersistentDataset(data=test_data_hackathon[:],
                                     transform=hackathon_test_transfrom,
                                     cache_dir=dirs["persistent"])
    train_loader = DataLoader(
        train_dataset,
        batch_size=4,
        #shuffle=True,
        pin_memory=using_gpu,
        num_workers=2,
        sampler=ImbalancedDatasetSampler(
            train_data_hackathon,
            callback_get_label=lambda x, i: x[i]['_label']),
        collate_fn=PadListDataCollate(Method.SYMMETRIC, NumpyPadMode.CONSTANT))
    valid_loader = DataLoader(
        valid_dataset,
        batch_size=4,
        shuffle=False,
        pin_memory=using_gpu,
        num_workers=2,
        sampler=ImbalancedDatasetSampler(
            valid_data_hackathon,
            callback_get_label=lambda x, i: x[i]['_label']),
        collate_fn=PadListDataCollate(Method.SYMMETRIC, NumpyPadMode.CONSTANT))
    test_loader = DataLoader(test_dataset,
                             batch_size=4,
                             shuffle=False,
                             pin_memory=using_gpu,
                             num_workers=2,
                             collate_fn=PadListDataCollate(
                                 Method.SYMMETRIC, NumpyPadMode.CONSTANT))

    # Setup network, loss function, optimizer and scheduler
    network = nets.DenseNet121(spatial_dims=3, in_channels=1,
                               out_channels=1).to(device)
    # pos_weight for class imbalance
    _, n, p = calculate_class_imbalance(train_data_hackathon)
    pos_weight = torch.Tensor([n, p]).to(device)
    loss_function = torch.nn.BCEWithLogitsLoss(pos_weight)
    optimizer = torch.optim.Adam(network.parameters(), lr=1e-4, weight_decay=0)
    scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer,
                                                       gamma=0.95,
                                                       last_epoch=-1)

    # Setup validator and trainer
    valid_post_transforms = Compose([
        Activationsd(keys="pred", sigmoid=True),
        #Activationsd(keys="pred", softmax=True),
    ])
    validator = Validator(device=device,
                          val_data_loader=valid_loader,
                          network=network,
                          post_transform=valid_post_transforms,
                          amp=using_gpu,
                          non_blocking=using_gpu)

    trainer = Trainer(device=device,
                      out_dir=dirs["out"],
                      out_name="DenseNet121",
                      max_epochs=120,
                      validation_epoch=1,
                      validation_interval=1,
                      train_data_loader=train_loader,
                      network=network,
                      optimizer=optimizer,
                      loss_function=loss_function,
                      lr_scheduler=None,
                      validator=validator,
                      amp=using_gpu,
                      non_blocking=using_gpu)
    """x_max, y_max, z_max, size_max = 0, 0, 0, 0
    for data in valid_loader:
        image = data["image"]
        label = data["label"]
        print()
        print(len(data['image_transforms']))
        #print(data['image_transforms'])
        print(label)
        shape = image.shape
        x_max = max(x_max, shape[-3])
        y_max = max(y_max, shape[-2])
        z_max = max(z_max, shape[-1])
        size = int(image.nelement()*image.element_size()/1024/1024)
        size_max = max(size_max, size)
        print("shape:", shape, "size:", str(size)+"MB")
        #multi_slice_viewer(image[0, 0, :, :, :], str(label))
    print(x_max, y_max, z_max, str(size_max)+"MB")
    exit()"""

    # Run trainer
    train_output = trainer.run()

    # Setup tester
    tester = Tester(device=device,
                    test_data_loader=test_loader,
                    load_dir=train_output,
                    out_dir=dirs["out"],
                    network=network,
                    post_transform=valid_post_transforms,
                    non_blocking=using_gpu,
                    amp=using_gpu)

    # Run tester
    tester.run()