def test_value(self, input_data, expected_value):
     percentile = None
     if len(input_data) == 3:
         [seg_1, seg_2, percentile] = input_data
     else:
         [seg_1, seg_2] = input_data
     ct = 0
     seg_1 = torch.tensor(seg_1)
     seg_2 = torch.tensor(seg_2)
     for metric in ["euclidean", "chessboard", "taxicab"]:
         for directed in [True, False]:
             hd_metric = HausdorffDistanceMetric(include_background=False,
                                                 distance_metric=metric,
                                                 percentile=percentile,
                                                 directed=directed)
             # shape of seg_1, seg_2 are: HWD, converts to BNHWD
             batch, n_class = 2, 3
             batch_seg_1 = seg_1.unsqueeze(0).unsqueeze(0).repeat(
                 [batch, n_class, 1, 1, 1])
             batch_seg_2 = seg_2.unsqueeze(0).unsqueeze(0).repeat(
                 [batch, n_class, 1, 1, 1])
             hd_metric(batch_seg_1, batch_seg_2)
             result = hd_metric.aggregate()
             expected_value_curr = expected_value[ct]
             np.testing.assert_allclose(expected_value_curr,
                                        result,
                                        rtol=1e-7)
             ct += 1
 def test_nans(self, input_data):
     [seg_1, seg_2] = input_data
     seg_1 = torch.tensor(seg_1)
     seg_2 = torch.tensor(seg_2)
     hd_metric = HausdorffDistanceMetric(include_background=False, get_not_nans=True)
     batch_seg_1 = seg_1.unsqueeze(0).unsqueeze(0)
     batch_seg_2 = seg_2.unsqueeze(0).unsqueeze(0)
     hd_metric(batch_seg_1, batch_seg_2)
     result, not_nans = hd_metric.aggregate()
     np.testing.assert_allclose(0, result, rtol=1e-7)
     np.testing.assert_allclose(0, not_nans, rtol=1e-7)
Exemple #3
0
    def __init__(
        self,
        include_background: bool = False,
        distance_metric: str = "euclidean",
        percentile: Optional[float] = None,
        directed: bool = False,
        output_transform: Callable = lambda x: x,
        device: Optional[torch.device] = None,
    ) -> None:
        """

        Args:
            include_background: whether to include distance computation on the first channel of the predicted output.
                Defaults to ``False``.
            distance_metric: : [``"euclidean"``, ``"chessboard"``, ``"taxicab"``]
                the metric used to compute surface distance. Defaults to ``"euclidean"``.
            percentile: an optional float number between 0 and 100. If specified, the corresponding
                percentile of the Hausdorff Distance rather than the maximum result will be achieved.
                Defaults to ``None``.
            directed: whether to calculate directed Hausdorff distance. Defaults to ``False``.
            output_transform: transform the ignite.engine.state.output into [y_pred, y] pair.
            device: device specification in case of distributed computation usage.

        """
        super().__init__(output_transform, device=device)
        metric_fn = HausdorffDistanceMetric(
            include_background=include_background,
            distance_metric=distance_metric,
            percentile=percentile,
            directed=directed,
            reduction=MetricReduction.NONE,
        )
        super().__init__(metric_fn=metric_fn,
                         output_transform=output_transform,
                         device=device)
    def __init__(
        self,
        include_background: bool = False,
        distance_metric: str = "euclidean",
        percentile: Optional[float] = None,
        directed: bool = False,
        reduction: Union[MetricReduction, str] = MetricReduction.MEAN,
        output_transform: Callable = lambda x: x,
        save_details: bool = True,
    ) -> None:
        """

        Args:
            include_background: whether to include distance computation on the first channel of the predicted output.
                Defaults to ``False``.
            distance_metric: : [``"euclidean"``, ``"chessboard"``, ``"taxicab"``]
                the metric used to compute surface distance. Defaults to ``"euclidean"``.
            percentile: an optional float number between 0 and 100. If specified, the corresponding
                percentile of the Hausdorff Distance rather than the maximum result will be achieved.
                Defaults to ``None``.
            directed: whether to calculate directed Hausdorff distance. Defaults to ``False``.
            reduction: {``"none"``, ``"mean"``, ``"sum"``, ``"mean_batch"``, ``"sum_batch"``,
                ``"mean_channel"``, ``"sum_channel"``}
                Define the mode to reduce computation result. Defaults to ``"mean"``.
            output_transform: callable to extract `y_pred` and `y` from `ignite.engine.state.output` then
                construct `(y_pred, y)` pair, where `y_pred` and `y` can be `batch-first` Tensors or
                lists of `channel-first` Tensors. the form of `(y_pred, y)` is required by the `update()`.
                `engine.state` and `output_transform` inherit from the ignite concept:
                https://pytorch.org/ignite/concepts.html#state, explanation and usage example are in the tutorial:
                https://github.com/Project-MONAI/tutorials/blob/master/modules/batch_output_transform.ipynb.
            save_details: whether to save metric computation details per image, for example: hausdorff distance
                of every image. default to True, will save to `engine.state.metric_details` dict with the metric name as key.

        """
        metric_fn = HausdorffDistanceMetric(
            include_background=include_background,
            distance_metric=distance_metric,
            percentile=percentile,
            directed=directed,
            reduction=reduction,
        )
        super().__init__(metric_fn=metric_fn,
                         output_transform=output_transform,
                         save_details=save_details)
    def __init__(
        self,
        include_background: bool = False,
        distance_metric: str = "euclidean",
        percentile: Optional[float] = None,
        directed: bool = False,
        output_transform: Callable = lambda x: x,
        save_details: bool = True,
    ) -> None:
        """

        Args:
            include_background: whether to include distance computation on the first channel of the predicted output.
                Defaults to ``False``.
            distance_metric: : [``"euclidean"``, ``"chessboard"``, ``"taxicab"``]
                the metric used to compute surface distance. Defaults to ``"euclidean"``.
            percentile: an optional float number between 0 and 100. If specified, the corresponding
                percentile of the Hausdorff Distance rather than the maximum result will be achieved.
                Defaults to ``None``.
            directed: whether to calculate directed Hausdorff distance. Defaults to ``False``.
            output_transform: callable to extract `y_pred` and `y` from `ignite.engine.state.output` then
                construct `(y_pred, y)` pair, where `y_pred` and `y` can be `batch-first` Tensors or
                lists of `channel-first` Tensors. the form of `(y_pred, y)` is required by the `update()`.
                for example: if `ignite.engine.state.output` is `{"pred": xxx, "label": xxx, "other": xxx}`,
                output_transform can be `lambda x: (x["pred"], x["label"])`.
            save_details: whether to save metric computation details per image, for example: hausdorff distance
                of every image. default to True, will save to `engine.state.metric_details` dict with the metric name as key.

        """
        metric_fn = HausdorffDistanceMetric(
            include_background=include_background,
            distance_metric=distance_metric,
            percentile=percentile,
            directed=directed,
            reduction=MetricReduction.MEAN,
        )
        super().__init__(
            metric_fn=metric_fn,
            output_transform=output_transform,
            save_details=save_details,
        )