Exemple #1
0
 def test_gpu(self, coef, x, expected):
     device = "cuda" if torch.cuda.is_available() else "cpu"
     x = torch.as_tensor(x, dtype=torch.float, device=device)
     x.requires_grad = True
     coef = torch.as_tensor(coef, dtype=torch.float, device=device)
     coef.requires_grad = True
     result = polyval(coef, x)
     if coef.shape[0] > 0:  # empty coef doesn't have grad
         result.mean().backward()
         np.testing.assert_allclose(coef.grad.shape, coef.shape)
     np.testing.assert_allclose(result.cpu().detach().numpy(), expected)
Exemple #2
0
 def test_floats(self, coef, x, expected):
     result = polyval(coef, x)
     np.testing.assert_allclose(result.cpu().numpy(), expected)