def test_shape(self, input_data, expected_shape): if input_data["model"] == "densenet2d": model = DenseNet121(spatial_dims=2, in_channels=1, out_channels=3) if input_data["model"] == "densenet3d": model = DenseNet(spatial_dims=3, in_channels=1, out_channels=3, init_features=2, growth_rate=2, block_config=(6, )) if input_data["model"] == "senet2d": model = SEResNet50(spatial_dims=2, in_channels=3, num_classes=4) if input_data["model"] == "senet3d": model = SEResNet50(spatial_dims=3, in_channels=3, num_classes=4) device = "cuda:0" if torch.cuda.is_available() else "cpu" model.to(device) model.eval() cam = GradCAM(nn_module=model, target_layers=input_data["target_layers"]) image = torch.rand(input_data["shape"], device=device) result = cam(x=image, layer_idx=-1) np.testing.assert_array_equal(cam.nn_module.class_idx.cpu(), model(image).max(1)[-1].cpu()) fea_shape = cam.feature_map_size(input_data["shape"], device=device) self.assertTupleEqual(fea_shape, input_data["feature_shape"]) self.assertTupleEqual(result.shape, expected_shape) # check result is same whether class_idx=None is used or not result2 = cam(x=image, layer_idx=-1, class_idx=model(image).max(1)[-1].cpu()) np.testing.assert_array_almost_equal(result, result2)
def test_shape(self, input_data, expected_shape): if input_data["model"] == "densenet2d": model = DenseNet121(spatial_dims=2, in_channels=1, out_channels=3) if input_data["model"] == "densenet3d": model = DenseNet(spatial_dims=3, in_channels=1, out_channels=3, init_features=2, growth_rate=2, block_config=(6, )) if input_data["model"] == "senet2d": model = SEResNet50(spatial_dims=2, in_channels=3, num_classes=4) if input_data["model"] == "senet3d": model = SEResNet50(spatial_dims=3, in_channels=3, num_classes=4) device = "cuda:0" if torch.cuda.is_available() else "cpu" model.to(device) model.eval() cam = CAM(nn_module=model, target_layers=input_data["target_layers"], fc_layers=input_data["fc_layers"]) image = torch.rand(input_data["shape"], device=device) result = cam(x=image, layer_idx=-1) fea_shape = cam.feature_map_size(input_data["shape"], device=device) self.assertTupleEqual(fea_shape, input_data["feature_shape"]) self.assertTupleEqual(result.shape, expected_shape)
def test_shape(self, cam_name): model = DenseNet(spatial_dims=3, in_channels=1, out_channels=3, init_features=2, growth_rate=2, block_config=(6, )) device = "cuda:0" if torch.cuda.is_available() else "cpu" model.to(device) model.eval() image = torch.rand((2, 1, 6, 6, 6), device=device) target_layer = "class_layers.relu" fc_layer = "class_layers.out" if cam_name == "CAM": inferer = SaliencyInferer(cam_name, target_layer, None, fc_layer, upsampler=default_upsampler) result = inferer(inputs=image, network=model, layer_idx=-1) else: inferer = SaliencyInferer(cam_name, target_layer, None, upsampler=default_upsampler) result = inferer(image, model, -1, retain_graph=False) self.assertTupleEqual(result.shape, (2, 1, 6, 6, 6))
out_channels_3d = 3 model_2d = DenseNet121(spatial_dims=2, in_channels=1, out_channels=out_channels_2d).to(device) model_2d_2c = DenseNet121(spatial_dims=2, in_channels=2, out_channels=out_channels_2d).to(device) model_3d = DenseNet(spatial_dims=3, in_channels=1, out_channels=out_channels_3d, init_features=2, growth_rate=2, block_config=(6, )).to(device) model_2d.eval() model_2d_2c.eval() model_3d.eval() # 2D w/ bounding box TEST_CASE_0 = [ { "nn_module": model_2d }, { "x": torch.rand(1, 1, 48, 64).to(device), "b_box": [-1, -1, 2, 40, 1, 62] }, (1, 1, 39, 62, out_channels_2d), (1, 1, 39, 62), ] # 3D w/ bounding box and stride TEST_CASE_1 = [