def test_script(self):
     net = EfficientNetBN(model_name="efficientnet-b0",
                          spatial_dims=2,
                          in_channels=3,
                          num_classes=1000)
     net.set_swish(
         memory_efficient=False
     )  # at the moment custom memory efficient swish is not exportable with jit
     test_data = torch.randn(1, 3, 224, 224)
     test_script_save(net, test_data)
Exemple #2
0
    def test_shape(self, input_param, input_shape, expected_shape):
        device = "cuda" if torch.cuda.is_available() else "cpu"

        with skip_if_downloading_fails():
            net = EfficientNetBN(**input_param).to(device)

        # run inference with random tensor
        with eval_mode(net):
            result = net(torch.randn(input_shape).to(device))

        # check output shape
        self.assertEqual(result.shape, expected_shape)
    def test_shape(self, input_param, input_shape, expected_shape):
        device = "cuda" if torch.cuda.is_available() else "cpu"

        try:
            # initialize model
            net = EfficientNetBN(**input_param).to(device)
        except (ContentTooShortError, HTTPError, RuntimeError) as e:
            print(str(e))
            return  # skipping the tests because of http errors

        # run inference with random tensor
        with eval_mode(net):
            result = net(torch.randn(input_shape).to(device))

        # check output shape
        self.assertEqual(result.shape, expected_shape)
Exemple #4
0
    def test_non_default_shapes(self, input_param, input_shape, expected_shape):
        device = "cuda" if torch.cuda.is_available() else "cpu"

        with skip_if_downloading_fails():
            net = EfficientNetBN(**input_param).to(device)

        # override input shape with different variations
        num_dims = len(input_shape) - 2
        non_default_sizes = [128, 256, 512]
        for candidate_size in non_default_sizes:
            input_shape = input_shape[0:2] + (candidate_size,) * num_dims
            # run inference with random tensor
            with eval_mode(net):
                result = net(torch.randn(input_shape).to(device))

            # check output shape
            self.assertEqual(result.shape, expected_shape)
    def test_non_default_shapes(self, input_param, input_shape, expected_shape):
        device = "cuda" if torch.cuda.is_available() else "cpu"

        try:
            # initialize model
            net = EfficientNetBN(**input_param).to(device)
        except (ContentTooShortError, HTTPError, RuntimeError) as e:
            print(str(e))
            return  # skipping the tests because of http errors

        # override input shape with different variations
        num_dims = len(input_shape) - 2
        non_default_sizes = [128, 256, 512]
        for candidate_size in non_default_sizes:
            input_shape = input_shape[0:2] + (candidate_size,) * num_dims
            # run inference with random tensor
            with eval_mode(net):
                result = net(torch.randn(input_shape).to(device))

            # check output shape
            self.assertEqual(result.shape, expected_shape)
Exemple #6
0
 def test_ill_arg(self):
     with self.assertRaises(ValueError):
         # wrong spatial_dims
         EfficientNetBN(model_name="efficientnet-b0", spatial_dims=4)
         # wrong model_name
         EfficientNetBN(model_name="efficientnet-b10", spatial_dims=3)