Exemple #1
0
    def __init__(
        self,
        keys: KeysCollection,
        spatial_size,
        sigma_range,
        magnitude_range,
        prob: float = 0.1,
        rotate_range=None,
        shear_range=None,
        translate_range=None,
        scale_range=None,
        mode: GridSampleModeSequence = GridSampleMode.BILINEAR,
        padding_mode: GridSamplePadModeSequence = GridSamplePadMode.REFLECTION,
        as_tensor_output: bool = False,
        device: Optional[torch.device] = None,
    ):
        """
        Args:
            keys: keys of the corresponding items to be transformed.
            spatial_size (3 ints): specifying output image spatial size [h, w, d].
                if `spatial_size` and `self.spatial_size` are not defined, or smaller than 1,
                the transform will use the spatial size of `img`.
            sigma_range (2 ints): a Gaussian kernel with standard deviation sampled
                 from ``uniform[sigma_range[0], sigma_range[1])`` will be used to smooth the random offset grid.
            magnitude_range (2 ints): the random offsets on the grid will be generated from
                ``uniform[magnitude[0], magnitude[1])``.
            prob: probability of returning a randomized affine grid.
                defaults to 0.1, with 10% chance returns a randomized grid,
                otherwise returns a ``spatial_size`` centered area extracted from the input image.
            mode: {``"bilinear"``, ``"nearest"``}
                Interpolation mode to calculate output values. Defaults to ``"bilinear"``.
                See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample
                It also can be a sequence of string, each element corresponds to a key in ``keys``.
            padding_mode: {``"zeros"``, ``"border"``, ``"reflection"``}
                Padding mode for outside grid values. Defaults to ``"reflection"``.
                See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample
                It also can be a sequence of string, each element corresponds to a key in ``keys``.
            as_tensor_output: the computation is implemented using pytorch tensors, this option specifies
                whether to convert it back to numpy arrays.
            device (torch.device): device on which the tensor will be allocated.

        See also:
            - :py:class:`RandAffineGrid` for the random affine parameters configurations.
            - :py:class:`Affine` for the affine transformation parameters configurations.
        """
        super().__init__(keys)
        self.rand_3d_elastic = Rand3DElastic(
            sigma_range=sigma_range,
            magnitude_range=magnitude_range,
            prob=prob,
            rotate_range=rotate_range,
            shear_range=shear_range,
            translate_range=translate_range,
            scale_range=scale_range,
            spatial_size=spatial_size,
            as_tensor_output=as_tensor_output,
            device=device,
        )
        self.mode = ensure_tuple_rep(mode, len(self.keys))
        self.padding_mode = ensure_tuple_rep(padding_mode, len(self.keys))
Exemple #2
0
 def __init__(
     self,
     keys,
     spatial_size,
     sigma_range,
     magnitude_range,
     prob=0.1,
     rotate_range=None,
     shear_range=None,
     translate_range=None,
     scale_range=None,
     mode="bilinear",
     padding_mode="zeros",
     as_tensor_output=False,
     device=None,
 ):
     """
     Args:
         keys (Hashable items): keys of the corresponding items to be transformed.
         spatial_size (3 ints): specifying output image spatial size [h, w, d].
         sigma_range (2 ints): a Gaussian kernel with standard deviation sampled
              from ``uniform[sigma_range[0], sigma_range[1])`` will be used to smooth the random offset grid.
         magnitude_range (2 ints): the random offsets on the grid will be generated from
             ``uniform[magnitude[0], magnitude[1])``.
         prob (float): probability of returning a randomized affine grid.
             defaults to 0.1, with 10% chance returns a randomized grid,
             otherwise returns a ``spatial_size`` centered area extracted from the input image.
         mode ('nearest'|'bilinear'): interpolation order. Defaults to ``'bilinear'``.
             if mode is a tuple of interpolation mode strings, each string corresponds to a key in ``keys``.
             this is useful to set different modes for different data items.
         padding_mode ('zeros'|'border'|'reflection'): mode of handling out of range indices.
             Defaults to ``'zeros'``.
         as_tensor_output (bool): the computation is implemented using pytorch tensors, this option specifies
             whether to convert it back to numpy arrays.
         device (torch.device): device on which the tensor will be allocated.
     See also:
         - :py:class:`RandAffineGrid` for the random affine parameters configurations.
         - :py:class:`Affine` for the affine transformation parameters configurations.
     """
     super().__init__(keys)
     default_mode = "bilinear" if isinstance(mode, (tuple, list)) else mode
     self.rand_3d_elastic = Rand3DElastic(
         sigma_range=sigma_range,
         magnitude_range=magnitude_range,
         prob=prob,
         rotate_range=rotate_range,
         shear_range=shear_range,
         translate_range=translate_range,
         scale_range=scale_range,
         spatial_size=spatial_size,
         mode=default_mode,
         padding_mode=padding_mode,
         as_tensor_output=as_tensor_output,
         device=device,
     )
     self.mode = mode
Exemple #3
0
    def __init__(
        self,
        keys: KeysCollection,
        sigma_range: Tuple[float, float],
        magnitude_range: Tuple[float, float],
        spatial_size: Optional[Union[Sequence[int], int]] = None,
        prob: float = 0.1,
        rotate_range: Optional[Union[Sequence[float], float]] = None,
        shear_range: Optional[Union[Sequence[float], float]] = None,
        translate_range: Optional[Union[Sequence[float], float]] = None,
        scale_range: Optional[Union[Sequence[float], float]] = None,
        mode: GridSampleModeSequence = GridSampleMode.BILINEAR,
        padding_mode: GridSamplePadModeSequence = GridSamplePadMode.REFLECTION,
        as_tensor_output: bool = False,
        device: Optional[torch.device] = None,
    ) -> None:
        """
        Args:
            keys: keys of the corresponding items to be transformed.
            sigma_range: a Gaussian kernel with standard deviation sampled from
                ``uniform[sigma_range[0], sigma_range[1])`` will be used to smooth the random offset grid.
            magnitude_range: the random offsets on the grid will be generated from
                ``uniform[magnitude[0], magnitude[1])``.
            spatial_size: specifying output image spatial size [h, w, d].
                if `spatial_size` and `self.spatial_size` are not defined, or smaller than 1,
                the transform will use the spatial size of `img`.
                if the components of the `spatial_size` are non-positive values, the transform will use the
                corresponding components of img size. For example, `spatial_size=(32, 32, -1)` will be adapted
                to `(32, 32, 64)` if the third spatial dimension size of img is `64`.
            prob: probability of returning a randomized affine grid.
                defaults to 0.1, with 10% chance returns a randomized grid,
                otherwise returns a ``spatial_size`` centered area extracted from the input image.
            rotate_range: angle range in radians. rotate_range[0] with be used to generate the 1st rotation
                parameter from `uniform[-rotate_range[0], rotate_range[0])`. Similarly, `rotate_range[1]` and
                `rotate_range[2]` are used in 3D affine for the range of 2nd and 3rd axes.
            shear_range: shear_range[0] with be used to generate the 1st shearing parameter from
                `uniform[-shear_range[0], shear_range[0])`. Similarly, `shear_range[1]` and `shear_range[2]`
                controls the range of the uniform distribution used to generate the 2nd and 3rd parameters.
            translate_range : translate_range[0] with be used to generate the 1st shift parameter from
                `uniform[-translate_range[0], translate_range[0])`. Similarly, `translate_range[1]` and
                `translate_range[2]` controls the range of the uniform distribution used to generate
                the 2nd and 3rd parameters.
            scale_range: scaling_range[0] with be used to generate the 1st scaling factor from
                `uniform[-scale_range[0], scale_range[0]) + 1.0`. Similarly, `scale_range[1]` and `scale_range[2]`
                controls the range of the uniform distribution used to generate the 2nd and 3rd parameters.
            mode: {``"bilinear"``, ``"nearest"``}
                Interpolation mode to calculate output values. Defaults to ``"bilinear"``.
                See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample
                It also can be a sequence of string, each element corresponds to a key in ``keys``.
            padding_mode: {``"zeros"``, ``"border"``, ``"reflection"``}
                Padding mode for outside grid values. Defaults to ``"reflection"``.
                See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample
                It also can be a sequence of string, each element corresponds to a key in ``keys``.
            as_tensor_output: the computation is implemented using pytorch tensors, this option specifies
                whether to convert it back to numpy arrays.
            device: device on which the tensor will be allocated.

        See also:
            - :py:class:`RandAffineGrid` for the random affine parameters configurations.
            - :py:class:`Affine` for the affine transformation parameters configurations.
        """
        super().__init__(keys)
        self.rand_3d_elastic = Rand3DElastic(
            sigma_range=sigma_range,
            magnitude_range=magnitude_range,
            prob=prob,
            rotate_range=rotate_range,
            shear_range=shear_range,
            translate_range=translate_range,
            scale_range=scale_range,
            spatial_size=spatial_size,
            as_tensor_output=as_tensor_output,
            device=device,
        )
        self.mode = ensure_tuple_rep(mode, len(self.keys))
        self.padding_mode = ensure_tuple_rep(padding_mode, len(self.keys))