Exemple #1
0
 def __init__(self, transforms=None) -> None:
     if transforms is None:
         transforms = []
     if not isinstance(transforms, (list, tuple)):
         raise ValueError("Parameters 'transforms' must be a list or tuple")
     self.transforms = transforms
     self.set_random_state(seed=get_seed())
Exemple #2
0
    def __init__(
        self,
        image_files,
        seg_files=None,
        labels=None,
        as_closest_canonical: bool = False,
        transform: Optional[Callable] = None,
        seg_transform: Optional[Callable] = None,
        image_only: bool = True,
        dtype: Optional[np.dtype] = np.float32,
    ):
        """
        Initializes the dataset with the image and segmentation filename lists. The transform `transform` is applied
        to the images and `seg_transform` to the segmentations.

        Args:
            image_files (list of str): list of image filenames
            seg_files (list of str): if in segmentation task, list of segmentation filenames
            labels (list or array): if in classification task, list of classification labels
            as_closest_canonical: if True, load the image as closest to canonical orientation
            transform: transform to apply to image arrays
            seg_transform: transform to apply to segmentation arrays
            image_only: if True return only the image volume, other return image volume and header dict
            dtype (np.dtype, optional): if not None convert the loaded image to this data type
        """

        if seg_files is not None and len(image_files) != len(seg_files):
            raise ValueError(
                "Must have same number of image and segmentation files")

        self.image_files = image_files
        self.seg_files = seg_files
        self.labels = labels
        self.as_closest_canonical = as_closest_canonical
        self.transform = transform
        self.seg_transform = seg_transform
        self.image_only = image_only
        self.dtype = dtype
        self.set_random_state(seed=get_seed())

        self._seed = 0  # transform synchronization seed